On the complexity of the Lickteig-Roy subresultant algorithm

Abstract In their 1996 article, Lickteig and Roy introduced a fast “divide and conquer” variant of the subresultant algorithm which avoids coefficient growth in defective cases. The present article concerns the complexity analysis of their algorithm over effective rings endowed with the partially defined division routine. We achieve essentially the same kind of complexity bound as over effective fields. As a consequence we obtain new convenient complexity bounds for gcds, especially when coefficients are in abstract polynomial rings where evaluation/interpolation schemes are not supposed to be available.

[1]  D. H. Lehmer Euclid's Algorithm for Large Numbers , 1938 .

[2]  Sartaj Sahni,et al.  Analysis of algorithms , 2000, Random Struct. Algorithms.

[3]  Michael Kerber,et al.  Division-free computation of subresultants using Bezout matrices , 2009, Int. J. Comput. Math..

[4]  Erich Kaltofen,et al.  On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.

[5]  Alkiviadis G. Akritas A new method for computing polynomial greates common divisors and polynomial remainder sequences , 1988 .

[6]  Jérémy Berthomieu,et al.  Reduction of bivariate polynomials from convex-dense to dense, with application to factorizations , 2012, Math. Comput..

[7]  Robert T. Moenck,et al.  Fast computation of GCDs , 1973, STOC.

[8]  Ephraim Feig Some results in algebraic complexity theory , 1980 .

[9]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[10]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[11]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[12]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[13]  Joachim von zur Gathen,et al.  Subresultants revisited , 2003, Theor. Comput. Sci..

[14]  Daniel Reischert Asymptotically fast computation of subresultants , 1997, ISSAC.

[15]  Grégoire Lecerf,et al.  Fast separable factorization and applications , 2008, Applicable Algebra in Engineering, Communication and Computing.

[16]  J. Shepherdson,et al.  On the factorisation of polynomials in a finite number of steps , 1955 .

[17]  W. Habicht Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens , 1948 .

[18]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[19]  A. Akritas,et al.  Fast Matrix Computation of Subresultant Polynomial Remainder Sequences , 2000 .

[20]  Alkiviadis G. Akritas,et al.  Matrix computation of subresultant polynomial remainder sequences in integral domains , 1995, Reliab. Comput..

[21]  Arnold Schönhage,et al.  Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.

[22]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[23]  Thomas Lickteig,et al.  Sylvester-Habicht Sequences and Fast Cauchy Index Computation , 2001, J. Symb. Comput..

[24]  Joris van der Hoeven,et al.  Modular SIMD arithmetic in Mathemagix , 2014, ACM Trans. Math. Softw..

[25]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[26]  Lionel Ducos Algorithme de Bareiss, algorithme des sous-résultants , 1996, RAIRO Theor. Informatics Appl..

[27]  R. Loos Generalized Polynomial Remainder Sequences , 1983 .

[28]  Joris van der Hoeven,et al.  Mathemagix User Guide , 2013 .

[29]  Lionel Ducos Optimizations of the subresultant algorithm , 2000 .

[30]  Joris van der Hoeven,et al.  Deterministic root finding over finite fields using Graeffe transforms , 2015, Applicable Algebra in Engineering, Communication and Computing.

[31]  Paul Walton Purdom,et al.  The Analysis of Algorithms , 1995 .

[32]  M'hammed El Kahoui,et al.  An elementary approach to subresultants theory , 2003, J. Symb. Comput..

[33]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[34]  J. Shepherdson,et al.  Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[35]  Mark Giesbrecht,et al.  Faster sparse multivariate polynomial interpolation of straight-line programs , 2014, J. Symb. Comput..

[36]  G. M. Introduction to Higher Algebra , 1908, Nature.

[37]  A. Akritas Sylvester''s forgotten form of the resultant , 1993 .

[38]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[39]  Mohab Safey El Din,et al.  New Structure Theorem for Subresultants , 2000, J. Symb. Comput..

[40]  Volker Strassen,et al.  The Computational Complexity of Continued Fractions , 1983, SIAM J. Comput..

[41]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[42]  Dario Bini,et al.  Fast fraction-free triangularization of Bezoutians with applications to sub-resultant chain computation , 1997 .

[43]  Joris van der Hoeven,et al.  Sparse Polynomial Interpolation in Practice , 2015, ACCA.

[44]  W. S. Brown On Euclid's algorithm and the computation of polynomial greatest common divisors , 1971, SYMSAC '71.

[45]  Laureano González-Vega,et al.  Minors of Bezout matrices, subresultants and the parameterization of the degree of the polynomial greatest common divisor , 2004, Int. J. Comput. Math..

[46]  Laureano González-Vega,et al.  Bezout matrices, Subresultant polynomials and parameters , 2009, Appl. Math. Comput..

[47]  Thomas Lickteig,et al.  Cauchy index computation , 1996 .

[48]  George E. Collins,et al.  The Calculation of Multivariate Polynomial Resultants , 1971, JACM.