On the complexity of the Lickteig-Roy subresultant algorithm
暂无分享,去创建一个
[1] D. H. Lehmer. Euclid's Algorithm for Large Numbers , 1938 .
[2] Sartaj Sahni,et al. Analysis of algorithms , 2000, Random Struct. Algorithms.
[3] Michael Kerber,et al. Division-free computation of subresultants using Bezout matrices , 2009, Int. J. Comput. Math..
[4] Erich Kaltofen,et al. On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.
[5] Alkiviadis G. Akritas. A new method for computing polynomial greates common divisors and polynomial remainder sequences , 1988 .
[6] Jérémy Berthomieu,et al. Reduction of bivariate polynomials from convex-dense to dense, with application to factorizations , 2012, Math. Comput..
[7] Robert T. Moenck,et al. Fast computation of GCDs , 1973, STOC.
[8] Ephraim Feig. Some results in algebraic complexity theory , 1980 .
[9] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[10] Joseph F. Traub,et al. On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.
[11] David Y. Y. Yun,et al. Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.
[12] Volker Strassen,et al. Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[13] Joachim von zur Gathen,et al. Subresultants revisited , 2003, Theor. Comput. Sci..
[14] Daniel Reischert. Asymptotically fast computation of subresultants , 1997, ISSAC.
[15] Grégoire Lecerf,et al. Fast separable factorization and applications , 2008, Applicable Algebra in Engineering, Communication and Computing.
[16] J. Shepherdson,et al. On the factorisation of polynomials in a finite number of steps , 1955 .
[17] W. Habicht. Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens , 1948 .
[18] Stuart J. Berkowitz,et al. On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..
[19] A. Akritas,et al. Fast Matrix Computation of Subresultant Polynomial Remainder Sequences , 2000 .
[20] Alkiviadis G. Akritas,et al. Matrix computation of subresultant polynomial remainder sequences in integral domains , 1995, Reliab. Comput..
[21] Arnold Schönhage,et al. Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.
[22] George E. Collins,et al. Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.
[23] Thomas Lickteig,et al. Sylvester-Habicht Sequences and Fast Cauchy Index Computation , 2001, J. Symb. Comput..
[24] Joris van der Hoeven,et al. Modular SIMD arithmetic in Mathemagix , 2014, ACM Trans. Math. Softw..
[25] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[26] Lionel Ducos. Algorithme de Bareiss, algorithme des sous-résultants , 1996, RAIRO Theor. Informatics Appl..
[27] R. Loos. Generalized Polynomial Remainder Sequences , 1983 .
[28] Joris van der Hoeven,et al. Mathemagix User Guide , 2013 .
[29] Lionel Ducos. Optimizations of the subresultant algorithm , 2000 .
[30] Joris van der Hoeven,et al. Deterministic root finding over finite fields using Graeffe transforms , 2015, Applicable Algebra in Engineering, Communication and Computing.
[31] Paul Walton Purdom,et al. The Analysis of Algorithms , 1995 .
[32] M'hammed El Kahoui,et al. An elementary approach to subresultants theory , 2003, J. Symb. Comput..
[33] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[34] J. Shepherdson,et al. Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[35] Mark Giesbrecht,et al. Faster sparse multivariate polynomial interpolation of straight-line programs , 2014, J. Symb. Comput..
[36] G. M.. Introduction to Higher Algebra , 1908, Nature.
[37] A. Akritas. Sylvester''s forgotten form of the resultant , 1993 .
[38] Chee-Keng Yap,et al. Fundamental problems of algorithmic algebra , 1999 .
[39] Mohab Safey El Din,et al. New Structure Theorem for Subresultants , 2000, J. Symb. Comput..
[40] Volker Strassen,et al. The Computational Complexity of Continued Fractions , 1983, SIAM J. Comput..
[41] Alfred V. Aho,et al. The Design and Analysis of Computer Algorithms , 1974 .
[42] Dario Bini,et al. Fast fraction-free triangularization of Bezoutians with applications to sub-resultant chain computation , 1997 .
[43] Joris van der Hoeven,et al. Sparse Polynomial Interpolation in Practice , 2015, ACCA.
[44] W. S. Brown. On Euclid's algorithm and the computation of polynomial greatest common divisors , 1971, SYMSAC '71.
[45] Laureano González-Vega,et al. Minors of Bezout matrices, subresultants and the parameterization of the degree of the polynomial greatest common divisor , 2004, Int. J. Comput. Math..
[46] Laureano González-Vega,et al. Bezout matrices, Subresultant polynomials and parameters , 2009, Appl. Math. Comput..
[47] Thomas Lickteig,et al. Cauchy index computation , 1996 .
[48] George E. Collins,et al. The Calculation of Multivariate Polynomial Resultants , 1971, JACM.