A nonorthogonal approach to perfect pairing

We present an alternative formulation of perfect pairing (PP) aimed at giving a more faithful representation of the valence correlation energy of an arbitrary molecule. In the new theory, the occupied and virtual orbitals are nonorthogonal amongst themselves but orthogonal to each other. Whereas for the fully orthogonal version of PP one has the number of pairs equal to the number of occupied orbitals, the current formulation allows for an arbitrary number of pairs built from redundant orbitals. We propose setting the number of pairs equal to the number of valence orbitals in the molecule. Preliminary results indicate that the redundant formulation gives qualitatively improved results for delocalized systems such as benzene, while maintaining the attractive features of PP for localized systems.

[1]  New theoretical description of the carbon-carbon triple bond. , 1986 .

[2]  R. P. Messmer,et al.  The nature of multiple bonds. 2. Significance of the perfect-pairing approximation , 1993 .

[3]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[4]  Martin Head-Gordon,et al.  Noniterative local second order Mo/ller–Plesset theory: Convergence with local correlation space , 1998 .

[5]  Martin Head-Gordon,et al.  A tensor formulation of many-electron theory in a nonorthogonal single-particle basis , 1998 .

[6]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[7]  J. S. Binkley,et al.  Electron correlation theories and their application to the study of simple reaction potential surfaces , 1978 .

[8]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[9]  John Edward Lennard-Jones,et al.  The molecular orbital theory of chemical valency XVI. A theory of paired-electrons in polyatomic molecules , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  R. P. Messmer,et al.  The nature of multiple bonds. 3. Benzene, bent bonds, and resonance , 1993 .

[11]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[12]  Martin Head-Gordon,et al.  The imperfect pairing approximation , 2000 .

[13]  Anna I. Krylov,et al.  Energies and analytic gradients for a coupled-cluster doubles model using variational Brueckner orbitals: Application to symmetry breaking in O4+ , 1998 .

[14]  P. Hiberty,et al.  A Different Story of Benzene , 1997 .

[15]  G. Scuseria,et al.  The optimization of molecular orbitals for coupled cluster wavefunctions , 1987 .

[16]  William A. Goddard,et al.  Self‐Consistent Procedures for Generalized Valence Bond Wavefunctions. Applications H3, BH, H2O, C2H6, and O2 , 1972 .

[17]  Martin Head-Gordon,et al.  Non-iterative local second order Møller–Plesset theory , 1998 .

[18]  William A. Goddard,et al.  GVB–RP: A reliable MCSCF wave function for large systems , 1999 .

[19]  Rodney J. Bartlett,et al.  Many‐body perturbation theory, coupled‐pair many‐electron theory, and the importance of quadruple excitations for the correlation problem , 1978 .

[20]  Philippe C. Hiberty,et al.  Thinking and computing valence bond in organic chemistry , 1998 .

[21]  David L. Cooper,et al.  Modern Valence Bond Theory , 1997 .

[22]  Anna I. Krylov,et al.  Size-consistent wave functions for nondynamical correlation energy: The valence active space optimized orbital coupled-cluster doubles model , 1998 .

[23]  I. I. Ukrainskii New variational function in the theory of quasi-one-dimensional metals , 1977 .

[24]  David L. Cooper,et al.  Modern valence bond representations of CASSCF wavefunctions , 1996 .

[25]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[26]  Curtis L. Janssen,et al.  An efficient reformulation of the closed‐shell coupled cluster single and double excitation (CCSD) equations , 1988 .

[27]  R. Friesner,et al.  Calculation of atomization energies by a multiconfigurational localized perturbation theory—Application for closed shell cases , 1999 .

[28]  William A. Goddard,et al.  The Description of Chemical Bonding From AB Initio Calculations , 1978 .

[29]  Mario Raimondi,et al.  The electronic structure of the benzene molecule , 1986, Nature.

[30]  Yixiang Cao,et al.  Correlated ab Initio Electronic Structure Calculations for Large Molecules , 1999 .

[31]  W. Goddard,et al.  Correlation‐consistent configuration interaction: Accurate bond dissociation energies from simple wave functions , 1988 .

[32]  David L. Cooper,et al.  Applications of spin-coupled valence bond theory , 1991 .