Functional organization of catfish retina.

1. The basic organization of the biphasic (or concentric) receptive field is established in the bipolar cells as the result of an interaction between two signals, one local representing the activity of a small number of receptors, and the other integrating (19, 20) or global (28) coming from the S space or a lamina formed by the horizontal cells (8, 14, 22, 29). 2. Bipolar-ganglion cell pairs are segregated into two types; A (on center) and B (off center) pairs. A depolarization of a bipolar cell produces spike discharges from ganglion cells of the same type and a hyperpolarization depresses their discharges. I haven't detected any cross talk between the types A and B pairs. Bipolar and ganglion cells must be interfaced by the classical chemical synapses, the only such kind in the catfish retina. 3. Horizontal and type N neurons form two lateral transmission systems, one distal and the other proximal (19, 20). Signals in the lateral systems are shared by the two receptive-field types and are not excitatory or inhibitory in themselves; it is incumbent upon the postsynaptic neurons to decide the polarity of the synaptic transmission. The horizontal cell participates directly in the formation of biphasic receptive fields of bipolar cells by providing their surrounding, whereas type N neuron seems to modify the receptive-field organization established in the bipolar cells. 4. Type N neurons are amacrine cells because they do not produce spike discharges (2, 18, 21) and because they influence the activity of both A and B receptive fields. 5. The function of the type C neuron is as unique as its structure (21) and is not fully clear as yet. It is not a conventional amacrine cell as the type N appears to be, nor is it a classical ganglion cell which forms either a type A or B receptive field (2). 6. Type Y neurons are a class of ganglion cells which forms either a type A or B receptive field.