Energy-based self-collision culling for arbitrary mesh deformations

In this paper, we accelerate self-collision detection (SCD) for a deforming triangle mesh by exploiting the idea that a mesh cannot self collide unless it deforms enough. Unlike prior work on subspace self-collision culling which is restricted to low-rank deformation subspaces, our energy-based approach supports arbitrary mesh deformations while still being fast. Given a bounding volume hierarchy (BVH) for a triangle mesh, we precompute Energy-based Self-Collision Culling (ESCC) certificates on bounding-volume-related sub-meshes which indicate the amount of deformation energy required for it to self collide. After updating energy values at runtime, many bounding-volume self-collision queries can be culled using the ESCC certificates. We propose an affine-frame Laplacian-based energy definition which sports a highly optimized certificate pre-process, and fast runtime energy evaluation. The latter is performed hierarchically to amortize Laplacian energy and affine-frame estimation computations. ESCC supports both discrete and continuous SCD with detailed and nonsmooth geometry. We observe significant culling on many examples, with SCD speed-ups up to 26X.

[1]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[2]  Pedro V. Sander,et al.  Geometry videos: a new representation for 3D animations , 2003, SCA '03.

[3]  Dinesh Manocha,et al.  ICCD: Interactive Continuous Collision Detection between Deformable Models Using Connectivity-Based Culling , 2009, IEEE Trans. Vis. Comput. Graph..

[4]  John Salmon,et al.  Automatic Creation of Object Hierarchies for Ray Tracing , 1987, IEEE Computer Graphics and Applications.

[5]  Matthias Müller,et al.  Solid simulation with oriented particles , 2011, ACM Trans. Graph..

[6]  Dinesh K. Pai,et al.  BD-tree: output-sensitive collision detection for reduced deformable models , 2004, ACM Trans. Graph..

[7]  Leonidas J. Guibas,et al.  Deformable spanners and applications , 2004, SCG '04.

[8]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[9]  Dinesh Manocha,et al.  Fast collision detection for deformable models using representative-triangles , 2008, I3D '08.

[10]  Gino van den Bergen Efficient Collision Detection of Complex Deformable Models using AABB Trees , 1997, J. Graphics, GPU, & Game Tools.

[11]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[12]  Ming C. Lin,et al.  Interactive collision detection between deformable models using chromatic decomposition , 2005, ACM Trans. Graph..

[13]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[14]  Leonidas J. Guibas,et al.  Collision detection for deforming necklaces , 2002, SCG '02.

[15]  Xavier Provot,et al.  Collision and self-collision handling in cloth model dedicated to design garments , 1997, Computer Animation and Simulation.

[16]  Doug L. James,et al.  Skinning mesh animations , 2005, ACM Trans. Graph..

[17]  R. Nickalls A new approach to solving the cubic: Cardan’s solution revealed , 1993, The Mathematical Gazette.

[18]  Joseph S. B. Mitchell,et al.  Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998, IEEE Trans. Vis. Comput. Graph..

[19]  Doug L. James,et al.  Subspace self-collision culling , 2010, ACM Trans. Graph..

[20]  Eitan Grinspun,et al.  Normal bounds for subdivision-surface interference detection , 2001, Proceedings Visualization, 2001. VIS '01..

[21]  Miguel A. Otaduy,et al.  Bounded normal trees for reduced deformations of triangulated surfaces , 2009, SCA '09.

[22]  Dinesh Manocha,et al.  ICCD: Interactive Continuous Collision Detection between Deformable Models Using Connectivity-Based Culling , 2008, IEEE Transactions on Visualization and Computer Graphics.

[23]  D. Manocha,et al.  Fast proximity computation among deformable models using discrete Voronoi diagrams , 2006, ACM Trans. Graph..

[24]  Markus H. Gross,et al.  Fast adaptive shape matching deformations , 2008, SCA '08.

[25]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2002, Future Gener. Comput. Syst..

[26]  Philip M. Hubbard,et al.  Collision Detection for Interactive Graphics Applications , 1995, IEEE Trans. Vis. Comput. Graph..

[27]  Nadia Magnenat-Thalmann,et al.  Efficient self‐collision detection on smoothly discretized surface animations using geometrical shape regularity , 1994, Comput. Graph. Forum.

[28]  Markus H. Gross,et al.  Meshless deformations based on shape matching , 2005, ACM Trans. Graph..

[29]  Sara C. Schvartzman,et al.  Star-contours for efficient hierarchical self-collision detection , 2010 .

[30]  Doug L. James,et al.  FastLSM: fast lattice shape matching for robust real-time deformation , 2007, ACM Trans. Graph..

[31]  Gabriel Zachmann,et al.  Collision Detection for Deformable Objects , 2004, Comput. Graph. Forum.

[32]  Dinesh Manocha,et al.  Quick-CULLIDE: fast inter- and intra-object collision culling using graphics hardware , 2005, IEEE Proceedings. VR 2005. Virtual Reality, 2005..

[33]  Bettina Speckmann Kinetic Data Structures , 2008, Encyclopedia of Algorithms.

[34]  Markus H. Gross,et al.  Detection of Collisions and Self-collisions Using Image-space Techniques , 2004, WSCG.

[35]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.