Monitoring Live Fuel Moisture Using Soil Moisture and Remote Sensing Proxies

Live fuel moisture (LFM) is an important fuel property controlling fuel ignition and fire propagation. LFM varies seasonally, and is controlled by precipitation, soil moisture, evapotranspiration, and plant physiology. LFM is typically sampled manually in the field, which leads to sparse measurements in space and time. Use of LFM proxies could reduce the need for field sampling while potentially improving spatial and temporal sampling density. This study compares soil moisture and remote sensing data to field-sampled LFM for Gambel oak (Quercus gambelii Nutt) and big sagebrush (Artemisia tridentata Nutt) in northern Utah. Bivariate linear regression models were constructed between LFM and four independent variables. Soil moisture was more strongly correlated with LFM than remote sensing measurements, and produced the lowest mean absolute error (MAE) in predicted LFM values at most of the sites. When sites were pooled, canopy water content (CWC) had stronger correlations with LFM than normalized difference vegetation index (NDVI) or normalized difference water index (NDWI). MAE values for all proxies were frequently above 20 % LFM at individual sites. Despite this relatively large error, remote sensing and soil moisture data may still be useful for improving understanding of spatial and temporal trends in LFM.

[1]  Eric Vermote,et al.  Atmospheric correction for the monitoring of land surfaces , 2008 .

[2]  E. Vermote,et al.  Seasonal and inter-annual variation in view angle effects on MODIS vegetation indices at three forest sites , 2011 .

[3]  Philip E. Dennison,et al.  Evaluating predictive models of critical live fuel moisture in the Santa Monica Mountains, California , 2008 .

[4]  D. Riaño,et al.  Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating , 2004 .

[5]  Thomas J. Jackson,et al.  Soil moisture retrieval from AMSR-E , 2003, IEEE Trans. Geosci. Remote. Sens..

[6]  Emilio Chuvieco,et al.  Linking ecological information and radiative transfer models to estimate fuel moisture content in the Mediterranean region of Spain: Solving the ill-posed inverse problem , 2009 .

[7]  John S. Sperry,et al.  DIFFERENCES IN DROUGHT ADAPTATION BETWEEN SUBSPECIES OF SAGEBRUSH (ARTEMISIA TRIDENTATA) , 1999 .

[8]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[9]  D. Roberts,et al.  Use of Normalized Difference Water Index for monitoring live fuel moisture , 2005 .

[10]  E. Johnson,et al.  The Relative Importance of Fuels and Weather on Fire Behavior in Subalpine Forests , 1995 .

[11]  Brian W. Barrett,et al.  Soil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques , 2009, Remote. Sens..

[12]  D. Peterson,et al.  Climate and wildfire area burned in western U.S. ecoprovinces, 1916-2003. , 2009, Ecological applications : a publication of the Ecological Society of America.

[13]  P. Curran Remote sensing of foliar chemistry , 1989 .

[14]  Pablo J. Zarco-Tejada,et al.  Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: analysis at leaf and canopy level , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[15]  E. Njoku,et al.  Passive microwave remote sensing of soil moisture , 1996 .

[16]  R. Fensholt,et al.  Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geostationary data , 2010 .

[17]  G. M. Byram,et al.  A Drought Index for Forest Fire Control , 1968 .

[18]  S. Tarantola,et al.  Detecting vegetation leaf water content using reflectance in the optical domain , 2001 .

[19]  F. M. Danson,et al.  Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors , 1995 .

[20]  S. Ustin,et al.  Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA , 2008 .

[21]  F. M. Danson,et al.  Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level , 2004 .

[22]  A. Robock,et al.  Temporal and spatial scales of observed soil moisture variations in the extratropics , 2000 .

[23]  Emilio Chuvieco,et al.  Estimation of Fuel Conditions for Fire Danger Assessment , 2009 .

[24]  D. Stow,et al.  Time series of chaparral live fuel moisture maps derived from MODIS satellite data , 2006 .

[25]  R. Burgan,et al.  Fuel Models and Fire Potential From Satellite and Surface Observations , 1998 .

[26]  Mehrez Zribi,et al.  New methodology for soil surface moisture estimation and its application to ENVISAT-ASAR multi-incidence data inversion , 2005 .

[27]  M. E. Alexander,et al.  Canadian Forest Fire Danger Rating System: An Overview , 1989 .

[28]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .

[29]  Claudia M. Castaneda,et al.  Estimating Canopy Water Content of Chaparral Shrubs Using Optical Methods , 1998 .

[30]  A. M. Bemmerzouk,et al.  Predicting live herbaceous moisture content from a seasonal drought index , 2003, International journal of biometeorology.

[31]  Luca Brocca,et al.  Soil moisture spatial variability in experimental areas of central Italy , 2007 .

[32]  J. San-Miguel-Ayanz,et al.  Integration of satellite sensor data, fuel type maps and meteorological observations for evaluation of forest fire risk at the pan-European scale , 2002 .

[33]  Paul J. Kramer,et al.  Water Relations of Plants , 1983 .

[34]  D. Roberts,et al.  Evaluation of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution Imaging Spectrometer (MODIS) measures of live fuel moisture and fuel condition in a shrubland ecosystem in southern California , 2006 .

[35]  Josep Piñol,et al.  Estimating live fine fuels moisture content using meteorologically-based indices , 2001 .

[36]  D. Riaño,et al.  Estimation of live fuel moisture content from MODIS images for fire risk assessment , 2008 .

[37]  E. Chuvieco,et al.  Prediction of fire occurrence from live fuel moisture content measurements in a Mediterranean ecosystem , 2009 .

[38]  D. Riaño,et al.  Design of an empirical index to estimate fuel moisture content from NOAA-AVHRR images in forest fire danger studies. , 2003 .

[39]  Dar A. Roberts,et al.  Modeling seasonal changes in live fuel moisture and equivalent water thickness using a cumulative water balance index , 2003 .

[40]  Pascale C. Dubois,et al.  Measuring soil moisture with imaging radars , 1995, IEEE Trans. Geosci. Remote. Sens..

[41]  S. Ustin,et al.  Water content estimation in vegetation with MODIS reflectance data and model inversion methods , 2003 .

[42]  Philip E. Dennison,et al.  Critical live fuel moisture in chaparral ecosystems: a threshold for fire activity and its relationship to antecedent precipitation , 2009 .

[43]  D. Riaño,et al.  Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: Applications in fire danger assessment , 2002 .

[44]  A. Kuusk A fast, invertible canopy reflectance model , 1995 .

[45]  Richard L. Snyder,et al.  Evapotranspiration Data Management in California , 1992 .

[46]  D. Roberts,et al.  Deriving Water Content of Chaparral Vegetation from AVIRIS Data , 2000 .

[47]  S. Tarantola,et al.  Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1 - Theoretical approach , 2002 .

[48]  Sylvie Le Hégarat-Mascle,et al.  Soil moisture estimation from ERS/SAR data: toward an operational methodology , 2002, IEEE Trans. Geosci. Remote. Sens..