Solar Filament Recognition Based on Deep Learning

The paper presents a reliable method using deep learning to recognize solar filaments in H-alpha full-disk solar images automatically. This method cannot only identify filaments accurately but also minimize the effects of noise points of the solar images. Firstly, a raw filament dataset is set up, consisting of tens of thousands of images required for deep learning. Secondly, an automated method for solar filament identification is developed using the U-Net deep convolutional network. To test the performance of the method, a dataset with 60 pairs of manually corrected H-alpha images is employed. These images are obtained from the Big Bear Solar Observatory/Full-Disk H-alpha Patrol Telescope (BBSO/FDHA) in 2013. Cross-validation indicates that the method can efficiently identify filaments in full-disk H-alpha images.

[1]  Haimin Wang,et al.  Automatic Solar Filament Detection Using Image Processing Techniques , 2005 .

[2]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[3]  Jie Zhang,et al.  Observation of an evolving magnetic flux rope before and during a solar eruption , 2012, Nature Communications.

[4]  Vladlen Koltun,et al.  Multi-Scale Context Aggregation by Dilated Convolutions , 2015, ICLR.

[5]  Seunghoon Hong,et al.  Learning Deconvolution Network for Semantic Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[6]  E. Priest,et al.  The magnetic nature of solar flares , 2002 .

[7]  Haimin Wang,et al.  Automatic Solar Filament Segmentation and Characterization , 2011 .

[8]  Russell A. Howard,et al.  Prominence Eruptions and Coronal Mass Ejection: A Statistical Study Using Microwave Observations , 2003 .

[9]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[10]  P. Chen Coronal Mass Ejections: Models and Their Observational Basis , 2011 .

[11]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[13]  Kenneth R. Lang,et al.  The Cambridge Encyclopedia of the Sun , 2001 .

[14]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[16]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[17]  Iasonas Kokkinos,et al.  Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs , 2014, ICLR.

[18]  J. Aboudarham,et al.  Filament Recognition and Image Cleaning on Meudon Hα Spectroheliograms , 2005 .

[19]  Haimin Wang,et al.  Development of an Automatic Filament Disappearance Detection System , 2002 .

[20]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[21]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[22]  P. Chen,et al.  Developing an Advanced Automated Method for Solar Filament Recognition and Its Scientific Application to a Solar Cycle of MLSO Hα Data , 2013, 1303.6367.

[23]  N. Labrosse,et al.  Automatic Detection of Limb Prominences in 304 Å EUV Images , 2009, 0912.1099.

[24]  T. Forbes A review on the genesis of coronal mass ejections , 2000 .

[25]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[26]  Artur J. Kowalski,et al.  Automatic Extraction of Filaments in Hα Solar Images , 2003 .

[27]  Holly R. Gilbert,et al.  Active and Eruptive Prominences and Their Relationship to Coronal Mass Ejections , 2000 .

[28]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Haimin Wang,et al.  On the Relation between Filament Eruptions, Flares, and Coronal Mass Ejections , 2004 .

[30]  P. Chen Initiation and propagation of coronal mass ejections , 2007, 0712.3632.