Two-Dimensional Lateral Multiheterostructures Possessing Tunable Band Alignments

[1]  Yuerui Lu,et al.  Enhanced interactions of interlayer excitons in free-standing heterobilayers , 2022, Nature.

[2]  T. Irisawa,et al.  Efficient and Chiral Electroluminescence from In‐Plane Heterostructure of Transition Metal Dichalcogenide Monolayers , 2022, Advanced Functional Materials.

[3]  Bo Li,et al.  Endoepitaxial growth of monolayer mosaic heterostructures , 2022, Nature Nanotechnology.

[4]  Kenji Watanabe,et al.  Exciton spectroscopy and unidirectional transport in MoSe_2-WSe_2 lateral heterostructures encapsulated in hexagonal boron nitride , 2022, npj 2D Materials and Applications.

[5]  H. Son,et al.  Bandgap Engineering in 2D Lateral Heterostructures of Transition Metal Dichalcogenides via Controlled Alloying. , 2022, Small.

[6]  Gia Quyet Ngo,et al.  1D p–n Junction Electronic and Optoelectronic Devices from Transition Metal Dichalcogenide Lateral Heterostructures Grown by One‐Pot Chemical Vapor Deposition Synthesis , 2021, Advanced Functional Materials.

[7]  Zhongming Wei,et al.  The More, the Better–Recent Advances in Construction of 2D Multi‐Heterostructures , 2021, Advanced Functional Materials.

[8]  A. Pan,et al.  Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures , 2021, Light, science & applications.

[9]  A. Ouerghi,et al.  Indirect to direct band gap crossover in two-dimensional WS2(1−x)Se2x alloys , 2020, npj 2D Materials and Applications.

[10]  Guifu Zou,et al.  One-Pot Selective Epitaxial Growth of Large WS2/MoS2 Lateral and Vertical Heterostructures. , 2020, Journal of the American Chemical Society.

[11]  P. Ajayan,et al.  Lateral Monolayer MoSe2 -WSe2 p-n Heterojunctions with Giant Built-In Potentials. , 2020, Small.

[12]  T. Xu,et al.  Dual‐channel type tunable field‐effect transistors based on vertical bilayer WS 2(1 −  x ) Se 2 x /SnS 2 heterostructures , 2020 .

[13]  Libai Huang,et al.  Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers , 2020, Nature Materials.

[14]  A. Pan,et al.  Wavelength Tunable Interlayer Exciton Emission at Near-infrared Region in Van der Waals Semiconductor Heterostructures. , 2020, Nano letters.

[15]  Song Jin,et al.  Controllable Water Vapor Assisted Chemical Vapor Transport Synthesis of WS2–MoS2 Heterostructure , 2019, ACS Materials Letters.

[16]  A. Ouerghi,et al.  Strong interlayer hybridization in the aligned SnS2/WSe2 hetero-bilayer structure , 2019, npj 2D Materials and Applications.

[17]  S. Okada,et al.  Continuous Heteroepitaxy of Two-Dimensional Heterostructures Based on Layered Chalcogenides. , 2019, ACS nano.

[18]  A. Pan,et al.  Direct Vapor Growth of 2D Vertical Heterostructures with Tunable Band Alignments and Interfacial Charge Transfer Behaviors , 2019, Advanced science.

[19]  Jiaqiang Yan,et al.  Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.

[20]  F. Peeters,et al.  Interlayer excitons in transition metal dichalcogenide heterostructures , 2018, Physical Review B.

[21]  A. Pan,et al.  Band Alignment Engineering in Two-Dimensional Lateral Heterostructures. , 2018, Journal of the American Chemical Society.

[22]  D. Muller,et al.  Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain , 2018, Science.

[23]  Yi Cui,et al.  Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics , 2018, Nature Nanotechnology.

[24]  Yan Xin,et al.  One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy , 2018, Nature.

[25]  D. Muller,et al.  Tailoring Semiconductor Lateral Multijunctions for Giant Photoconductivity Enhancement , 2017, Advanced materials.

[26]  Jun Luo,et al.  Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices , 2017, Science.

[27]  Xiaodong Xu,et al.  Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures , 2017, Science Advances.

[28]  G. Flynn,et al.  Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy. , 2016, Nano letters.

[29]  A. Ouerghi,et al.  Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures. , 2016, Nano letters.

[30]  J. Furdyna,et al.  Scanning Tunneling Microscopy and Spectroscopy of Air Exposure Effects on Molecular Beam Epitaxy Grown WSe2 Monolayers and Bilayers. , 2016, ACS nano.

[31]  R. Yu,et al.  Synthesis of WS2xSe2-2x Alloy Nanosheets with Composition-Tunable Electronic Properties. , 2016, Nano letters.

[32]  Robert Vajtai,et al.  Tellurium-Assisted Low-Temperature Synthesis of MoS2 and WS2 Monolayers. , 2015, ACS nano.

[33]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[34]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[35]  X. Duan,et al.  Large Area Growth and Electrical Properties of p-Type WSe2 Atomic Layers , 2014, Nano letters.

[36]  Timur K. Kim,et al.  Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor , 2014, Nature Physics.

[37]  C. S. Chang,et al.  Determination of band alignment in the single-layer MoS2/WSe2 heterojunction , 2014, Nature Communications.

[38]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[39]  R. Wallace,et al.  Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors , 2013, 1308.0767.

[40]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.