Jump process for the trend estimation of time series

A jump process approach is proposed for the trend estimation of time series. The proposed jump process estimator can locally minimize two important features of a trend, the smoothness and fidelity, and explicitly balance the fundamental tradeoff between them. A weighted average form of the jump process estimator is derived. The connection of the proposed approach to the Hanning filter, Gaussian kernel regression, the heat equation and the Wiener process is discussed. It is found that the weight function of the jump process approaches the Gaussian kernel, as the smoothing parameter increases. The proposed method is validated through numerical applications to both real data analysis and simulation study, and a comparison with the Henderson filter.

[1]  H. Müller Nonparametric regression analysis of longitudinal data , 1988 .

[2]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[3]  G. Wei,et al.  A unified approach for the solution of the Fokker-Planck equation , 2000, physics/0004074.

[4]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[5]  M. Akritas,et al.  Estimation of the conditional distribution in regression with censored data: a comparative study , 2001 .

[6]  Edmund Taylor Whittaker On a New Method of Graduation , 1922, Proceedings of the Edinburgh Mathematical Society.

[7]  Philip Hans Franses,et al.  Time Series Models for Business and Economic Forecasting , 1998 .

[8]  Sergio Rebelo,et al.  Low Frequency Filtering And Real Business Cycles , 1993 .

[9]  F. Canova Detrending and business cycle facts , 1998 .

[10]  Wolfgang Härdle,et al.  SOME THEORY ON M‐SMOOTHING OF TIME SERIES , 1986 .

[11]  Gur Mosheiov,et al.  On trend estimation of time-series: a simple linear programming approach , 1997 .

[12]  Oscar Firschein,et al.  Readings in computer vision: issues, problems, principles, and paradigms , 1987 .

[13]  Fabio Canova,et al.  Detrending and business cycle facts: A user's guide , 1998 .

[14]  Nigel Meade,et al.  Prediction intervals for growth curve forecasts , 1995 .

[15]  ScienceDirect Computational statistics & data analysis , 1983 .

[16]  J. Scott Long,et al.  Modern Methods of Data Analysis , 1990 .

[17]  Marianne Baxter,et al.  Measuring Business Cycles: Approximate Band-Pass Filters for Economic Time Series , 1995, Review of Economics and Statistics.

[18]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[19]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .

[20]  Terence C. Mills,et al.  Modelling trends in economic history , 1996 .

[21]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[22]  Harald Uhlig,et al.  Understanding unit rooters: a helicopter tour , 1991 .

[23]  Agostino Di Ciaccio,et al.  Improving nonparametric regression methods by bagging and boosting , 2002 .

[24]  D. Pollock Trend estimation and de-trending via rational square-wave filters , 2000 .

[25]  Michael Ball,et al.  Trend growth in post-1850 British economic history: The Kalman filter and historical judgment , 1996 .

[26]  John H. Cochrane,et al.  [Pitfalls and Opportunities: What Macroeconomists Should Know about Unit Roots]: Comment , 1991, NBER Macroeconomics Annual.

[27]  J. Durbin,et al.  Local trend estimation and seasonal adjustment of economic and social time series (with discussion) , 1982 .

[28]  R. Fisher The Advanced Theory of Statistics , 1943, Nature.

[29]  C. Chatfield,et al.  Box‐Jenkins Seasonal Forecasting: Problems in a Case‐Study , 1973 .

[30]  C. Nelson,et al.  Trends and random walks in macroeconmic time series: Some evidence and implications , 1982 .

[31]  Gudmund Høst,et al.  Kriging by local polynomials , 1999 .

[32]  J. Molenaar,et al.  Trend Estimation and Regression Analysis in Climatological Time Series: An Application of Structural Time Series Models and the Kalman Filter , 1995 .

[33]  Theo Gasser,et al.  Smoothing Techniques for Curve Estimation , 1979 .

[34]  K. Doksum,et al.  On spline estimators and prediction intervals in nonparametric regression , 2000 .

[35]  Saad T. Bakir,et al.  Nonparametric Regression and Spline Smoothing , 2000, Technometrics.

[36]  J. Hart Kernel regression estimation with time series errors , 1991 .

[37]  David F. Findley,et al.  New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program , 1998 .

[38]  George E. P. Box,et al.  Some Comments on a Paper by Chatfield and Prothero and on a Review by Kendall , 1973 .

[39]  P. Perron,et al.  Trends and random walks in macroeconomic time series : Further evidence from a new approach , 1988 .

[40]  Chris Chatfield,et al.  The Analysis of Time Series: An Introduction , 1981 .

[41]  J. Hart,et al.  Kernel Regression Estimation Using Repeated Measurements Data , 1986 .

[42]  P. A. Blight The Analysis of Time Series: An Introduction , 1991 .

[43]  M. Bianchi,et al.  A comparison of methods for trend estimation , 1999 .

[44]  E. Prescott,et al.  Postwar U.S. Business Cycles: An Empirical Investigation , 1997 .

[45]  C. Sims Bayesian skepticism on unit root econometrics , 1988 .

[46]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[47]  Y. Wen,et al.  A simple nonlinear filter for economic time series analysis , 1999 .

[48]  H. Müller,et al.  Kernel estimation of regression functions , 1979 .

[49]  Jeffrey D. Hart,et al.  Automated Kernel Smoothing of Dependent Data by Using Time Series Cross‐Validation , 1994 .

[50]  Achim Hummel,et al.  Representations Based on Zero-Crossing in Scale-Space-M , 2018, CVPR 1986.

[51]  Eva Ferreira,et al.  Semiparametric approaches to signal extraction problems in economic time series , 2000 .

[52]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .