Numerical Aspects of the Application of Recursive Filters to Variational Statistical Analysis. Part II: Spatially Inhomogeneous and Anisotropic General Covariances

Abstract In this second part of a two-part study of recursive filter techniques applied to the synthesis of covariances in a variational analysis, methods by which non-Gaussian shapes and spatial inhomogeneities and anisotropies for the covariances may be introduced in a well-controlled way are examined. These methods permit an analysis scheme to possess covariance structures with adaptive variations of amplitude, scale, profile shape, and degrees of local anisotropy, all as functions of geographical location and altitude. First, it is shown how a wider and more useful variety of covariance shapes than just the Gaussian may be obtained by the positive superposition of Gaussian components of different scales, or by further combinations of these operators with the application of Laplacian operators in order for the products to possess negative sidelobes in their radial profiles. Then it is shown how the techniques of recursive filters may be generalized to admit the construction of covariances whose charact...

[1]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[2]  P. Bergthórsson,et al.  Numerical Weather Map Analysis , 1955 .

[3]  G. P. Cressman AN OPERATIONAL OBJECTIVE ANALYSIS SYSTEM , 1959 .

[4]  L. Gandin Objective Analysis of Meteorological Fields , 1963 .

[5]  S. Barnes,et al.  A Technique for Maximizing Details in Numerical Weather Map Analysis , 1964 .

[6]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[7]  Loren Enochson,et al.  Digital Time Series Analysis. , 1972 .

[8]  M. Shapiro,et al.  Objective Cross-Section Analyses by Hermite Polynomial Interpolation on Isentropic Surfaces , 1973 .

[9]  Åke Björck,et al.  Numerical Methods , 2021, Markov Renewal and Piecewise Deterministic Processes.

[10]  H. J. Thiébaux Anisotropic Correlation Functions for Objective Analysis , 1976 .

[11]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[12]  C. K. Yuen,et al.  Digital Filters , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  A. Lorenc A Global Three-Dimensional Multivariate Statistical Interpolation Scheme , 1981 .

[14]  Herschel L. Mitchell,et al.  Horizontal structure of hemispheric forecast error correlations for geopotential and temperature , 1986 .

[15]  Anthony Hollingsworth,et al.  The statistical structure of short-range forecast errors as determined from radiosonde data , 1986 .

[16]  Andrew C. Lorenc,et al.  Analysis methods for numerical weather prediction , 1986 .

[17]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[18]  R. J. Purser,et al.  A Semi-Implicit, Semi-Lagrangian Finite-Difference Scheme Using Hligh-Order Spatial Differencing on a Nonstaggered Grid , 1988 .

[19]  Stanley G. Benjamin,et al.  An Isentropic Mesoα-Scale Analysis System and Its Sensitivity to Aircraft and Surface Observations , 1989 .

[20]  John Derber,et al.  A Global Oceanic Data Assimilation System , 1989 .

[21]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[22]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[23]  A. Lorenc Iterative analysis using covariance functions and filters , 1992 .

[24]  S. CohnData Assessing the Eeects of Data Selection with Dao's Physical-space Statistical Analysis System , 1994 .

[25]  Dean S. Oliver,et al.  Moving averages for Gaussian simulation in two and three dimensions , 1995 .

[26]  Daniel S. Wilks,et al.  Statistical Methods in the Atmospheric Sciences: An Introduction , 1995 .

[27]  R. James Purser,et al.  Recursive Filter Objective Analysis of Meteorological Fields: Applications to NESDIS Operational Processing , 1995 .

[28]  Philippe Courtier,et al.  Dynamical structure functions in a four‐dimensional variational assimilation: A case study , 1996 .

[29]  Andrew C. Lorenc,et al.  Development of an Operational Variational Assimilation Scheme (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[30]  Dick Dee,et al.  Ooce Note Series on Global Modeling and Data Assimilation Maximum-likelihood Estimation of Forecast and Observation Error Covariance Parameters , 2022 .

[31]  Philippe Courtier,et al.  Dual formulation of four‐dimensional variational assimilation , 1997 .

[32]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[33]  Gérald Desroziers,et al.  A Coordinate Change for Data Assimilation in Spherical Geometry of Frontal Structures , 1997 .

[34]  R. Rood Office Note Series on Global Modeling and Data Assimilation , 1997 .

[35]  Lars Peter Riishojgaard,et al.  A direct way of specifying flow‐dependent background error correlations for meteorological analysis systems , 1998 .

[36]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation , 1998 .

[37]  S. Cohn,et al.  Assessing the Effects of Data Selection with the DAO Physical-Space Statistical Analysis System* , 1998 .

[38]  T. Gneiting Correlation functions for atmospheric data analysis , 1999 .

[39]  Dick Dee,et al.  Maximum-Likelihood Estimation of Forecast and Observation Error Covariance Parameters. Part I: Methodology , 1999 .

[40]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[41]  A. O'Neill Atmospheric Data Assimilation , 2000 .

[42]  David R. Stauffer,et al.  A Heuristic Study on the Importance of Anisotropic Error Distributions in Data Assimilation , 2001 .

[43]  N. Roberts,et al.  Numerical aspects of the application of recursive filters to variational statistical analysis with spatially inhomogeneous covariance , 2001 .

[44]  P. Courtier,et al.  Correlation modelling on the sphere using a generalized diffusion equation , 2001 .

[45]  Robert James Purser,et al.  Parallel implementation of compact numerical schemes , 2001 .

[46]  R. Purser,et al.  Three-Dimensional Variational Analysis with Spatially Inhomogeneous Covariances , 2002 .

[47]  Robert James Purser,et al.  A Bayesian technique for estimating continuously varying statistical parameters of a variational assimilation , 2003 .