Structural and Magnetic Properties of the Breathing Pyrochlore LiInCr4−xFexO8

Herein, the structure and magnetic properties of the breathing pyrochlore compound LiInCr4−xFexO8 (x = 0, 0.2, 0.4, 0.5) are reported. Raman scattering experiments show the hardening behavior of the active mode induced by the increased ionic masses and bond strength. The long‐range antiferromagnetic order and spin‐gap state of parent samples are found to be suppressed with the increasing Fe content. The average magnetic exchange couplings are strongly antiferromagnetic and systematically enhanced with substitution. Bulk magnetization data of substituted samples show weak ferromagnetic interaction and occurrence of a spin‐glass‐like transition at high Fe contents.

[1]  H. Jeschke,et al.  Breathing chromium spinels: a showcase for a variety of pyrochlore Heisenberg Hamiltonians , 2019, npj Quantum Materials.

[2]  A. Matsuo,et al.  Magnetic and Structural Properties of A-Site Ordered Chromium Spinel Sulfides: Alternating Antiferromagnetic and Ferromagnetic Interactions in the Breathing Pyrochlore Lattice , 2018, 1801.07354.

[3]  A. Shukla,et al.  Magnetostructural coupling and magnetodielectric effects in the A -site cation-ordered spinel LiFeC r 4 O 8 , 2017 .

[4]  Minseong Lee,et al.  Multistage symmetry breaking in the breathing pyrochlore lattice Li ( Ga , In ) Cr 4 O 8 , 2016 .

[5]  J. Rodríguez-Carvajal,et al.  Complex magnetostructural order in the frustrated spinel LiInCr 4 O 8 , 2015 .

[6]  Y. Okamoto,et al.  Magnetic Phase Diagram of the Breathing Pyrochlore Antiferromagnet LiGa1−xInxCr4O8 , 2015, 1503.08902.

[7]  Yukio Tanaka,et al.  Novel Phase Transitions in the Breathing Pyrochlore Lattice: ^{7}Li-NMR on LiInCr_{4}O_{8} and LiGaCr_{4}O_{8} , 2014, Physical review letters.

[8]  Taylor D. Sparks,et al.  Magnetocapacitance as a sensitive probe of magnetostructural changes in NiCr2O4 , 2013, 1309.0016.

[9]  C. Jesus,et al.  Weak ferromagnetic component on the bulk ZnFe2O4 compound , 2014 .

[10]  J. Attfield,et al.  Breathing pyrochlore lattice realized in A-site ordered spinel oxides LiGaCr4O8 and LiInCr4O8. , 2013, Physical review letters.

[11]  D. Varjas,et al.  Magnetoelasticity in ACr2O4 spinel oxides (A= Mn, Fe, Co, Ni, and Cu) , 2012, 1212.4301.

[12]  K. Page,et al.  New (Bi1.88Fe0.12)(Fe1.42Te0.58)O6.87 Pyrochlore with Spin-Glass Transition , 2011 .

[13]  Brian D. Hosterman Raman Spectroscopic Study of Solid Solution Spinel Oxides , 2011 .

[14]  A. Nugroho,et al.  Magnetodielectric coupling in frustrated spin systems: the spinels MCr2O4 (M = Mn, Co and Ni) , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  V. Caignaert,et al.  Spin glass to cluster glass transition in geometrically frustratedCaBaFe4−xLixO7ferrimagnets , 2009 .

[16]  S. Cheong,et al.  Spin-lattice order in frustrated ZnCr2O4. , 2009, Physical Review Letters.

[17]  Y. Ueda,et al.  Pressure-enhanced direct exchange coupling observed in chromium spinels , 2008 .

[18]  J. Attfield,et al.  Low temperature neutron diffraction study of MgCr2O4 spinel , 2008 .

[19]  H. Takagi,et al.  Spiral spin structure in the Heisenberg pyrochlore magnet Cd Cr 2 O 4 , 2007 .

[20]  B. Stojanovic,et al.  Spectroscopic study of spinel ZnCr2O4 obtained from mechanically activated ZnO-Cr2O3 mixtures , 2007 .

[21]  T. Goto,et al.  Successive field-induced transitions in a frustrated antiferromagnet Hg Cr 2 O 4 , 2006 .

[22]  Hans Wondratschek,et al.  Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. , 2006, Acta crystallographica. Section A, Foundations of crystallography.

[23]  H. Takagi,et al.  Statics and dynamics of incommensurate spin order in a geometrically frustrated antiferromagnet CdCr2O4. , 2005, Physical review letters.

[24]  K. Yubuta,et al.  Spin-glass behavior in CeCu2-type uranium compound U2AuGa3 , 2005 .

[25]  H. Takagi,et al.  Magnetic-field induced transition to the 1/2 magnetization plateau state in the geometrically frustrated magnet CdCr2O4. , 2005, Physical review letters.

[26]  S. Cheong,et al.  Emergent excitations in a geometrically frustrated magnet , 2002, Nature.

[27]  S. Saxena,et al.  High-Pressure Raman Spectroscopic Study of Spinel (ZnCr2O4) , 2002 .

[28]  R. Moessner,et al.  Order by distortion and string modes in pyrochlore antiferromagnets. , 2001, Physical review letters.

[29]  G. Goya,et al.  Spin-glass ordering in Zn1ÀxMnxIn2Te4 diluted magnetic semiconductor , 2001 .

[30]  Yamashita,et al.  Spin-driven jahn-teller distortion in a pyrochlore system , 2000, Physical review letters.

[31]  Epstein,et al.  Photoinduced magnetism, dynamics, and cluster glass behavior of a molecule-based magnet , 2000, Physical review letters.

[32]  C. Lacroix,et al.  Quantum spin liquid: The Heisenberg antiferromagnet on the three-dimensional pyrochlore lattice , 2000 .

[33]  Arthur P. Ramirez,et al.  Strongly Geometrically Frustrated Magnets , 1994 .

[34]  J. Mydosh Spin glasses : an experimental introduction , 1993 .

[35]  H. Lutz,et al.  Normal coordinate analyses and lattice dynamical calculations of spinel-type ZnCr2O4 , 1991 .

[36]  P. Tarte,et al.  Infrared studies of spinels—III. The normal II-III spinels , 1971 .

[37]  P. Wojtowicz,et al.  Exchange Interactions in Ferromagnetic Chromium Chalcogenide Spinels , 1966 .

[38]  J. Goodenough,et al.  Suggestion concerning magnetic interactions in spinels , 1959 .