Bandwidth on AT-Free Graphs

We study the classical Bandwidth problem from the viewpoint of parameterized algorithms. In the Bandwidth problem we are given a graph G = (V,E) together with a positive integer k, and asked whether there is an bijective function β: {1, ..., n} ?V such that for every edge uv ? E, |β ? 1(u) ? β ? 1(v)| ≤ k. The problem is notoriously hard, and it is known to be NP-complete even on very restricted subclasses of trees. The best known algorithm for Bandwidth for small values of k is the celebrated algorithm by Saxe [SIAM Journal on Algebraic and Discrete Methods, 1980 ], which runs in time $2^{{\mathcal{O}}(k)}n^{k+1}$. In a seminal paper, Bodlaender, Fellows and Hallet [STOC 1994 ] ruled out the existence of an algorithm with running time of the form $f(k)n^{{\mathcal{O}}(1)}$ for any function f even for trees, unless the entire W-hierarchy collapses. We initiate the search for classes of graphs where Bandwidth is fixed parameter tractable (FPT), that is, solvable in time $f(k)n^{{\mathcal{O}}(1)}$ for some function f. In this paper we present an algorithm with running time $2^{{\mathcal O}(k \log k)} n^2$ for Bandwidth on AT-free graphs, a well-studied graph class that contains interval, permutation, and cocomparability graphs. Our result is the first non-trivial FPT algorithm for Bandwidth on a graph class where the problem remains NP-complete.

[1]  Rolf H. M ring Triangulating graphs without asteroidal triples , 1996 .

[2]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[3]  Michael R. Fellows,et al.  Beyond NP-completeness for problems of bounded width (extended abstract): hardness for the W hierarchy , 1994, STOC '94.

[4]  Dieter Kratsch,et al.  Bandwidth of bipartite permutation graphs in polynomial time , 2008, J. Discrete Algorithms.

[5]  Peter C. Fishburn,et al.  Linear Discrepancy and Bandwidth , 2001, Order.

[6]  S. Olariu,et al.  Optimal greedy algorithms for indifference graphs , 1992, Proceedings IEEE Southeastcon '92.

[7]  S. Assmann,et al.  The Bandwidth of Caterpillars with Hairs of Length 1 and 2 , 1981 .

[8]  Dieter Kratsch,et al.  Approximating the Bandwidth for Asteroidal Triple-Free Graphs , 1999, J. Algorithms.

[9]  Rolf H. Möhring,et al.  Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..

[10]  James B. Saxe,et al.  Dynamic-Programming Algorithms for Recognizing Small-Bandwidth Graphs in Polynomial Time , 1980, SIAM J. Algebraic Discret. Methods.

[11]  Christos H. Papadimitriou,et al.  The NP-Completeness of the bandwidth minimization problem , 1976, Computing.

[12]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[13]  G. Khosrovshahi,et al.  Computing the bandwidth of interval graphs , 1990 .

[14]  Dieter Kratsch,et al.  Bandwidth of Split and Circular Permutation Graphs , 2000, WG.

[15]  Haim Kaplan,et al.  Pathwidth, Bandwidth, and Completion Problems to Proper Interval Graphs with Small Cliques , 1996, SIAM J. Comput..

[16]  Stephan Olariu,et al.  Asteroidal Triple-Free Graphs , 1993, SIAM J. Discret. Math..

[17]  Marcin Pilipczuk,et al.  Exact and Approximate Bandwidth , 2009, ICALP.

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[19]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[20]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[21]  Marek Karpinski,et al.  On Approximation Intractability of the Bandwidth Problem , 1997, Electron. Colloquium Comput. Complex..

[22]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[23]  Stephan Olariu,et al.  An Optimal Greedy Heuristic to Color Interval Graphs , 1991, Inf. Process. Lett..

[24]  B. Monien The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete , 1986 .

[25]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[26]  Alan George,et al.  Computer Solution of Large Sparse Positive Definite , 1981 .

[27]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .