Uniform superconvergent analysis of a new mixed finite element method for nonlinear Bi-wave singular perturbation problem

Abstract Uniform superconvergent analysis of a new low order nonconforming mixed finite element method (MFEM) is studied for solving the fourth order nonlinear Bi-wave singular perturbation problem (SPP) by E Q 1 r o t element. On one hand, the existence, uniqueness and stability of the numerical solutions are proved. On the other hand, with the help of the special characters of this element, uniform superclose result of order O ( h 2 ) for the original variable in the broken H 1 norm and uniform optimal order estimate of order O ( h 2 ) for the intermediate variable in L 2 norm are deduced irrelevant to the real perturbation parameter δ appearing in the considered problem, respectively. In which, the nonlinear term in the Bi-wave SPP, which is the main difficulty in the whole error analysis, is dealt with rigorously through a novel splitting technique. Moreover, the global uniform superconvergent estimate is obtained with the interpolated postprocessing approach. Finally, some numerical results are provided to confirm the theoretical analysis. Here h is the subdivision parameter.

[1]  Dongwoo Sheen,et al.  P1-Nonconforming Quadrilateral Finite Element Methods for Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[2]  Dongyang Shi,et al.  Uniform superconvergence analysis of Ciarlet‐Raviart scheme for Bi‐wave singular perturbation problem , 2018, Mathematical Methods in the Applied Sciences.

[3]  Dongyang Shi,et al.  Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations , 2013, Appl. Math. Comput..

[4]  Dongyang Shi,et al.  Unconditional superconvergence analysis for nonlinear hyperbolic equation with nonconforming finite element , 2017, Appl. Math. Comput..

[5]  Qiang Du,et al.  Studies of a Ginzburg-Landau Model for d-Wave Superconductors , 1999, SIAM J. Appl. Math..

[6]  Fabio Milner,et al.  Mixed finite element methods for quasilinear second-order elliptic problems , 1985 .

[7]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[8]  Dongyang Shi,et al.  APPROXIMATION OF NONCONFORMING QUASI-WILSON ELEMENT FOR SINE-GORDON EQUATIONS * , 2013 .

[9]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.

[10]  Dongyang Shi,et al.  New estimates of mixed finite element method for fourth‐order wave equation , 2017 .

[11]  Xiaobing Feng,et al.  Finite element methods for a bi-wave equation modeling d-wave superconductors , 2009 .

[12]  Dongyang Shi,et al.  Superconvergence analysis of a new low order nonconforming MFEM for time-fractional diffusion equation , 2018, Applied Numerical Mathematics.

[13]  Q. Lin,et al.  Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .

[14]  Dongyang Shi,et al.  Superconvergence analysis of nonconforming FEM for nonlinear time-dependent thermistor problem , 2019, Appl. Math. Comput..

[15]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[16]  Dongyang Shi,et al.  A new approach of superconvergence analysis for nonlinear BBM equation on anisotropic meshes , 2016, Appl. Math. Lett..

[17]  Wei Liu,et al.  A two-grid algorithm based on expanded mixed element discretizations for strongly nonlinear elliptic equations , 2014, Numerical Algorithms.

[18]  C. Kallin,et al.  Microscopic Derivation of the Ginzburg-Landau Equations for a d-wave Superconductor on a Lattice , 1996 .

[19]  R. Zhdanov,et al.  Symmetry reduction and some exact solutions of nonlinear biwave equations , 1996 .

[20]  Sangita Yadav,et al.  Superconvergent Discontinuous Galerkin Methods for Linear Non-selfadjoint and Indefinite Elliptic Problems , 2013, J. Sci. Comput..

[21]  Xiaobing Feng,et al.  Discontinuous finite element methods for a bi-wave equation modeling d-wave superconductors , 2011, Math. Comput..