FSONet: A Wireless Backhaul for Multi-Gigabit Picocells Using Steerable Free Space Optics

Expected increase in cellular demand has pushed recent interest in picocell networks which have reduced cell sizes (100-200m or less). For ease of deployment of such networks, a wireless backhaul network is highly desired. Since RF-based technologies are unlikely to provide the desired multi-gigabit data rates, we motivate and explore use of free space optics (FSO) for picocell backhaul. In particular, we present a novel network architecture based on steerable links and sufficiently many robust short-range links, to help circumvent the key challenge of outdoor effects in reliable operation of outdoor FSO links. Our architecture is motivated by the fact that, due to the high density of picocells, many short-range links will occur naturally in a picocell backhaul. Moreover, use of steerable FSO links facilitates networks with sufficient redundancy while using only a small number of interfaces per node. We address the key problems that arise in the context of such a backhaul architecture, viz., an FSO link design with desired characteristics, and related network design and management problems. We develop and evaluate a robust 100m FSO link prototype, and simulate the proposed architecture in many metro US cities while show its viability via evaluation of key performance metrics.

[1]  Ignas G. Niemegeers,et al.  CogCell: cognitive interplay between 60 GHz picocells and 2.4/5 GHz hotspots in the 5G era , 2015, IEEE Communications Magazine.

[2]  Scott Bloom,et al.  THE PHYSICS OF FREE-SPACE OPTICS , 2001 .

[3]  Nikhil R. Devanur,et al.  ProjecToR: Agile Reconfigurable Data Center Interconnect , 2016, SIGCOMM.

[4]  Dimitrios Koutsonikolas,et al.  60 GHz Multi-Gigabit Indoor WLANs: Dream or Reality? , 2015, ArXiv.

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Edward A. Watson,et al.  A Review of Phased Array Steering for Narrow-Band Electrooptical Systems , 2009, Proceedings of the IEEE.

[7]  Asan Gani Abdul Muthalif,et al.  Active Vibration Isolation System to Improve Free Space Optics Communication , 2013 .

[8]  Jeffrey G. Andrews,et al.  What Will 5G Be? , 2014, IEEE Journal on Selected Areas in Communications.

[9]  Rita Mahon,et al.  InAlAs/InGaAs avalanche photodiode arrays for free space optical communication. , 2015, Applied optics.

[10]  E. Ciaramella,et al.  1.28-Tb/s (32 $\times$ 40 Gb/s) Free-Space Optical WDM Transmission System , 2009, IEEE Photonics Technology Letters.

[11]  James J. Sluss,et al.  A tracking system for mobile FSO , 2008, SPIE LASE.

[12]  Martín Casado,et al.  Ethane: taking control of the enterprise , 2007, SIGCOMM '07.

[13]  ChunLei Lv,et al.  Implementation of FTA with high bandwidth and tracking accuracy in FSO , 2012, 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet).

[14]  Ben Y. Zhao,et al.  Demystifying 60GHz outdoor picocells , 2014, MobiCom.

[15]  Amin Vahdat,et al.  Hedera: Dynamic Flow Scheduling for Data Center Networks , 2010, NSDI.

[16]  Mohamed-Slim Alouini,et al.  Hybrid Radio/Free-Space Optical Design for Next Generation Backhaul Systems , 2015, IEEE Transactions on Communications.

[17]  Erich Leitgeb,et al.  Characterization of Fog and Snow Attenuations for Free-Space Optical Propagation , 2009, J. Commun..

[18]  Samir Ranjan Das,et al.  Understanding traffic dynamics in cellular data networks , 2011, 2011 Proceedings IEEE INFOCOM.

[19]  Eric J. Korevaar,et al.  Understanding the performance of free-space optics [Invited] , 2003 .

[20]  A. Majumdar Advanced Free Space Optics (FSO): A Systems Approach , 2014 .

[21]  Peng Deng,et al.  MEMS-based beam-steerable free-space optical communication link for reconfigurable wireless data center , 2017, OPTO.

[22]  R. Ravi,et al.  A polylogarithmic approximation algorithm for the group Steiner tree problem , 2000, SODA '98.

[23]  Isaac I. Kim,et al.  Availability of free-space optics (FSO) and hybrid FSO/RF systems , 2001, SPIE ITCom.

[24]  David Walker,et al.  Abstractions for network update , 2012, SIGCOMM '12.

[25]  Ulrika Engström,et al.  Non-Line-of-Sight Microwave Backhaul in Heterogeneous Networks , 2013, 2013 IEEE 78th Vehicular Technology Conference (VTC Fall).

[26]  Ben Y. Zhao,et al.  Understanding and Predicting Data Hotspots in Cellular Networks , 2016, Mob. Networks Appl..

[27]  James V. Krogmeier,et al.  Millimeter Wave Beamforming for Wireless Backhaul and Access in Small Cell Networks , 2013, IEEE Transactions on Communications.

[28]  Himanshu Shah,et al.  FireFly , 2014, SIGCOMM.

[29]  Heinz Willebrand,et al.  Free Space Optics: Enabling Optical Connectivity in Today's Networks , 2001 .

[30]  Shigeru Murata,et al.  The new tracking control system for Free-Space Optical Communications , 2011, 2011 International Conference on Space Optical Systems and Applications (ICSOS).

[31]  Ian F. Akyildiz,et al.  Terahertz band: Next frontier for wireless communications , 2014, Phys. Commun..

[32]  Tzung-Hsien Ho,et al.  Pointing, Acquisition, and Tracking Systems for Free-Space Optical Communication Links , 2007 .

[33]  Stamatios V. Kartalopoulos,et al.  Free Space Optical Networks for Ultra-Broad Band Services , 2011 .

[34]  Debbie Kedar,et al.  Urban optical wireless communication networks: the main challenges and possible solutions , 2004, IEEE Communications Magazine.

[35]  Andrea J. Goldsmith,et al.  Resource allocation for constrained backhaul in picocell networks , 2011, 2011 Information Theory and Applications Workshop.

[36]  Di Yuan,et al.  Optimization of Free Space Optical Wireless Network for Cellular Backhauling , 2014, IEEE Journal on Selected Areas in Communications.

[37]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[38]  Mirrorcle Technologies MEMS Mirrors – Technical Overview , 2013 .

[39]  J. Strohbehn Laser beam propagation in the atmosphere , 1978 .

[40]  Sujata Banerjee,et al.  DevoFlow: scaling flow management for high-performance networks , 2011, SIGCOMM.

[41]  Mohsen Kavehrad,et al.  Combined CATV and very-high-speed data transmission over a 1550-nm wavelength indoor optical wireless link , 2014, Photonics West - Optoelectronic Materials and Devices.

[42]  Mohamed-Slim Alouini,et al.  FSO-Based Vertical Backhaul/Fronthaul Framework for 5G+ Wireless Networks , 2016, IEEE Communications Magazine.

[43]  Martin Fürer,et al.  Approximating the Minimum-Degree Steiner Tree to within One of Optimal , 1994, J. Algorithms.