Novel antibodies reveal presynaptic localization of C9orf72 protein and reduced protein levels in C9orf72 mutation carriers

[1]  D. Pizzo,et al.  Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis , 2018, Acta Neuropathologica.

[2]  Michael J. Cowan,et al.  Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons , 2018, Nature Medicine.

[3]  B. Dubois,et al.  Early Cognitive, Structural, and Microstructural Changes in Presymptomatic C9orf72 Carriers Younger Than 40 Years , 2018, JAMA neurology.

[4]  Kevin F. Bieniek,et al.  In-depth clinico-pathological examination of RNA foci in a large cohort of C9ORF72 expansion carriers , 2017, Acta Neuropathologica.

[5]  S. Müller,et al.  Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator , 2017, eLife.

[6]  K. Kawakami,et al.  Glycine-alanine dipeptide repeat protein contributes to toxicity in a zebrafish model of C9orf72 associated neurodegeneration , 2017, Molecular Neurodegeneration.

[7]  A. Pandey,et al.  Loss of C9orf72 Enhances Autophagic Activity via Deregulated mTOR and TFEB Signaling , 2016, PLoS genetics.

[8]  Joseph Amick,et al.  C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling , 2016, Molecular biology of the cell.

[9]  Jian-Fu Chen,et al.  A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy , 2016, Science Advances.

[10]  A. Whitworth,et al.  The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy , 2016, The EMBO journal.

[11]  M. Oulad-Abdelghani,et al.  Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin‐2 to induce motor neuron dysfunction and cell death , 2016, The EMBO journal.

[12]  L. H. van den Berg,et al.  Full ablation of C9orf72 in mice causes immune system-related pathology and neoplastic events but no motor neuron defects , 2016, Acta Neuropathologica.

[13]  M. Smolka,et al.  The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway , 2016, Acta neuropathologica communications.

[14]  C. Siao,et al.  C9orf72 ablation causes immune dysregulation characterized by leukocyte expansion, autoantibody production, and glomerulonephropathy in mice , 2016, Scientific Reports.

[15]  R. Jahn,et al.  Functions of Rab Proteins at Presynaptic Sites , 2016, Cells.

[16]  D. Mann,et al.  Neurodegeneration in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9orf72 is linked to TDP‐43 pathology and not associated with aggregated forms of dipeptide repeat proteins , 2015, Neuropathology and applied neurobiology.

[17]  L. Petrucelli,et al.  C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD , 2015, Neuron.

[18]  L. Petrucelli,et al.  Novel clinical associations with specific C9ORF72 transcripts in patients with repeat expansions in C9ORF72 , 2015, Acta Neuropathologica.

[19]  E. Rogaeva,et al.  Isoform‐specific antibodies reveal distinct subcellular localizations of C9orf72 in amyotrophic lateral sclerosis , 2015, Annals of neurology.

[20]  J. Vickers,et al.  C9ORF72 expression and cellular localization over mouse development , 2015, Acta Neuropathologica Communications.

[21]  L. Petrucelli,et al.  Quantitative analysis and clinico-pathological correlations of different dipeptide repeat protein pathologies in C9ORF72 mutation carriers , 2015, Acta Neuropathologica.

[22]  Raymond D. Schellevis,et al.  C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits , 2015, Annals of neurology.

[23]  Kevin F. Bieniek,et al.  C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits , 2015, Science.

[24]  Dmitri D. Pervouchine,et al.  The human transcriptome across tissues and individuals , 2015, Science.

[25]  M. Peschanski,et al.  Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes , 2014, Nature Biotechnology.

[26]  O. Hendrich,et al.  C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins , 2014, Science.

[27]  M. Mann,et al.  C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration , 2014, Acta Neuropathologica.

[28]  H. Morris,et al.  Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion , 2014, Neurobiology of Aging.

[29]  Stuart A. Wilson,et al.  Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions , 2014, Brain : a journal of neurology.

[30]  Patrick G. Shaw,et al.  C9orf72 Nucleotide Repeat Structures Initiate Molecular Cascades of Disease , 2014, Nature.

[31]  G. Rouleau,et al.  Deletion of C9ORF72 Results in Motor Neuron Degeneration and Stress Sensitivity in C. elegans , 2013, PloS one.

[32]  J. Ule,et al.  Hexanucleotide Repeats in ALS/FTD Form Length-Dependent RNA Foci, Sequester RNA Binding Proteins, and Are Neurotoxic , 2013, Cell reports.

[33]  J. Rothstein,et al.  RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia , 2013, Proceedings of the National Academy of Sciences.

[34]  K. Eggan,et al.  The mouse C9ORF72 ortholog is enriched in neurons known to degenerate in ALS and FTD , 2013, Nature Neuroscience.

[35]  A. Isaacs,et al.  C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci , 2013, Acta Neuropathologica.

[36]  E. Kremmer,et al.  Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins , 2013, Acta Neuropathologica.

[37]  Kevin F. Bieniek,et al.  Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS , 2013, Acta Neuropathologica.

[38]  S. Lorenzl,et al.  Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations , 2013, Acta Neuropathologica.

[39]  C. Farquharson,et al.  Total Protein Analysis as a Reliable Loading Control for Quantitative Fluorescent Western Blotting , 2013, PloS one.

[40]  A. Brice,et al.  Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis , 2013, Annals of neurology.

[41]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[42]  Kevin F. Bieniek,et al.  Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS , 2013, Neuron.

[43]  C. Broeckhoven,et al.  hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations , 2013, Acta Neuropathologica.

[44]  Timothy P. Levine,et al.  The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs , 2013, Bioinform..

[45]  L. Aravind,et al.  Discovery of Novel DENN Proteins: Implications for the Evolution of Eukaryotic Intracellular Membrane Structures and Human Disease , 2012, Front. Gene..

[46]  J. Satoh,et al.  Dystrophic neurites express C9orf72 in Alzheimer's disease brains , 2012, Alzheimer's Research & Therapy.

[47]  S. Pereson,et al.  A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study , 2012, The Lancet Neurology.

[48]  E. M. De La Cruz,et al.  Insights regarding guanine nucleotide exchange from the structure of a DENN-domain protein complexed with its Rab GTPase substrate , 2011, Proceedings of the National Academy of Sciences.

[49]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[50]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[51]  D. Rigden,et al.  Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors , 2010, The Journal of cell biology.

[52]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[53]  T. Südhof,et al.  Rab3 Superprimes Synaptic Vesicles for Release: Implications for Short-Term Synaptic Plasticity , 2006, The Journal of Neuroscience.

[54]  S. Pfeffer,et al.  Targeting Rab GTPases to distinct membrane compartments , 2004, Nature Reviews Molecular Cell Biology.

[55]  T. Südhof,et al.  A Complete Genetic Analysis of Neuronal Rab3 Function , 2004, The Journal of Neuroscience.

[56]  Christian Haass,et al.  Subcellular Localization of Wild-Type and Parkinson's Disease-Associated Mutant α-Synuclein in Human and Transgenic Mouse Brain , 2000, The Journal of Neuroscience.

[57]  David F. Clayton,et al.  Characterization of a novel protein regulated during the critical period for song learning in the zebra finch , 1995, Neuron.

[58]  P. Greengard,et al.  Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation , 1983, The Journal of cell biology.

[59]  P Siekevitz,et al.  Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities , 1980, The Journal of cell biology.

[60]  M. Oulad-Abdelghani,et al.  Loss of C 9 ORF 72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death , 2016 .

[61]  E. Friauf,et al.  A subcellular prefractionation protocol for minute amounts of mammalian cell cultures and tissue , 2005, Proteomics.