Oil and eicosapentaenoic acid production by the diatom Phaeodactylum tricornutum cultivated outdoors in Green Wall Panel (GWP®) reactors

Phaeodactylum tricornutum is a widely studied diatom and has been proposed as a source of oil and polyunsaturated fatty acids (PUFA), particularly eicosapentaenoic acid (EPA). Recent studies indicate that lipid accumulation occurs under nutritional stress. Aim of this research was to determine how changes in nitrogen availability affect productivity, oil yield, and fatty acid (FA) composition of P. tricornutum UTEX 640. After preliminary laboratory trials, outdoor experiments were carried out in 40‐L GWP® reactors under different nitrogen regimes in batch. Nitrogen replete cultures achieved the highest productivity of biomass (about 18 g m−2 d−1) and EPA (about 0.35 g m−2 d−1), whereas nitrogen‐starved cultures achieved the highest FA productivity (about 2.6 g m−2 d−1). The annual potential yield of P. tricornutum grown outdoors in GWP® reactors is 730 kg of EPA per hectare under nutrient‐replete conditions and 5,800 kg of FA per hectare under nitrogen starvation. Biotechnol. Bioeng. 2017;114: 2204–2210. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

[1]  J. H. Ryther,et al.  Studies of marine planktonic diatoms , 1962 .

[2]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[3]  Peter Pohl,et al.  Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes☆ , 1984 .

[4]  C. Parrish,et al.  Particulate and dissolved lipid classes in cultures of Phaeodactylum tricornutum grown in cage culture turbidostats with a range of nitrogen supply rates , 1987 .

[5]  O. Ward,et al.  Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions , 1991, Applied and environmental microbiology.

[6]  Michael A. Borowitzka,et al.  Light and nitrogen deficiency effects on the growth and composition ofPhaeodactylum tricornutum , 1993 .

[7]  F. G. Fernández,et al.  Modeling of eicosapentaenoic acid (EPA) production from Phaeodactylum tricornutum cultures in tubular photobioreactors. Effects of dilution rate, tube diameter, and solar irradiance. , 2000, Biotechnology and bioengineering.

[8]  J. M. Fernández-Sevilla,et al.  Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. , 2000, Phytochemistry.

[9]  F. G. Acién,et al.  Tubular photobioreactor design for algal cultures. , 2001, Journal of biotechnology.

[10]  J. Cullen,et al.  FLUORESCENCE‐BASED MAXIMAL QUANTUM YIELD FOR PSII AS A DIAGNOSTIC OF NUTRIENT STRESS , 2001 .

[11]  Phang Siew Moi,et al.  Handbook of Microalgal Culture. Biotechnology and Applied Phycology , 2004, Journal of Applied Phycology.

[12]  Michael A. Borowitzka,et al.  Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production ofPhaeodactylum tricornutum grown in a tubular photobioreactor , 1994, Journal of Applied Phycology.

[13]  Ulrike Schmid-Staiger,et al.  Optimization of eicosapentaenoic acid production byPhaeodactylum tricornutumin the flat panel airlift (FPA) reactor , 2004, Journal of Applied Phycology.

[14]  Hugh L. MacIntyre,et al.  Using Cultures to Investigate the Physiological Ecology of Microalgae , 2005 .

[15]  P. Spolaore,et al.  Commercial applications of microalgae. , 2006, Journal of bioscience and bioengineering.

[16]  Mario R. Tredici,et al.  Mass production of microalgae: photobioreactors , 2007 .

[17]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[18]  S. Harrison,et al.  Lipid productivity as a key characteristic for choosing algal species for biodiesel production , 2009, Journal of Applied Phycology.

[19]  L. Rodolfi,et al.  Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor , 2009, Biotechnology and bioengineering.

[20]  G. C. Zittelli,et al.  Advances in microalgal culture for aquaculture feed and other uses , 2009 .

[21]  A. Converti,et al.  EFFECT OF TEMPERATURE AND NITROGEN CONCENTRATION ON THE GROWTH AND LIPID CONTENT OF NANNOCHLOROPSIS OCULATA AND CHLORELLA VULGARIS FOR BIODIESEL PRODUCTION , 2009 .

[22]  J. Pruvost,et al.  Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. , 2009, Bioresource technology.

[23]  Teresa M. Mata,et al.  Microalgae for biodiesel production and other applications: A review , 2010 .

[24]  Mario R. Tredici,et al.  Photobiology of microalgae mass cultures: understanding the tools for the next green revolution , 2010 .

[25]  Navid R. Moheimani,et al.  Sustainable biofuels from algae , 2013, Mitigation and Adaptation Strategies for Global Change.

[26]  A. Zarka,et al.  Cloning and molecular characterization of a novel acyl‐CoA:diacylglycerol acyltransferase 1‐like gene (PtDGAT1) from the diatom Phaeodactylum tricornutum , 2011, The FEBS journal.

[27]  O. Bernard,et al.  NEUTRAL LIPID AND CARBOHYDRATE PRODUCTIVITIES AS A RESPONSE TO NITROGEN STATUS IN ISOCHRYSIS SP. (T‐ISO; HAPTOPHYCEAE): STARVATION VERSUS LIMITATION 1 , 2012, Journal of phycology.

[28]  M. Prussi,et al.  Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. , 2012, Bioresource technology.

[29]  J. Kopecký,et al.  Photoacclimation of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in photobioreactors and open ponds , 2012 .

[30]  Jo-Shu Chang,et al.  Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. , 2012, Bioresource technology.

[31]  René H Wijffels,et al.  The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. , 2012, Bioresource technology.

[32]  M. Borowitzka High-value products from microalgae—their development and commercialisation , 2013, Journal of Applied Phycology.

[33]  D. Martens,et al.  Simultaneous growth and neutral lipid accumulation in microalgae. , 2013, Bioresource technology.

[34]  Giuseppe Torzillo,et al.  Productivity and biochemical composition of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in tubular photobioreactors and open ponds , 2013 .

[35]  Graziella Chini Zittelli,et al.  Photobioreactors for Microalgal Biofuel Production , 2013 .

[36]  L. Rodolfi,et al.  Nannochloropsis sp. F&M‐M24: Oil production, effect of mixing on productivity and growth in an industrial wastewater , 2013 .

[37]  F. Bux,et al.  Biodiesel from microalgae: A critical evaluation from laboratory to large scale production , 2013 .

[38]  Mario R Tredici,et al.  Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor , 2014, Biotechnology for Biofuels.

[39]  C. Posten,et al.  Biorefinery of microalgae – opportunities and constraints for different production scenarios , 2014, Biotechnology journal.

[40]  M. Park,et al.  Systematically programmed adaptive evolution reveals potential role of carbon and nitrogen pathways during lipid accumulation in Chlamydomonas reinhardtii , 2014, Biotechnology for Biofuels.

[41]  L. Rodolfi,et al.  Growth, photosynthetic efficiency, and biochemical composition of Tetraselmis suecica F&M‐M33 grown with LEDs of different colors , 2014, Biotechnology and bioengineering.

[42]  Matteo Prussi,et al.  Energy balance of algal biomass production in a 1-ha “Green Wall Panel” plant: How to produce algal biomass in a closed reactor achieving a high Net Energy Ratio ☆ , 2015 .

[43]  Savita Kaul,et al.  Algae based biorefinery - how to make sense? , 2015 .

[44]  R. Sen,et al.  Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application—A review , 2015 .

[45]  R. Wijffels,et al.  Microalgal triacylglycerides production in outdoor batch-operated tubular PBRs , 2015, Biotechnology for Biofuels.

[46]  Maria J. Barbosa,et al.  Towards industrial products from microalgae , 2016 .

[47]  S. Boussiba,et al.  Cultivation of Nannochloropsis oceanica F&M-M24 and Tetraselmis suecica F&M-M33 in the two 0.5-ha BIOFAT pilot plants for biofuel production , 2016 .

[48]  L. Rodolfi,et al.  Techno-economic analysis of microalgal biomass production in a 1-ha Green Wall Panel (GWP®) plant , 2016 .

[49]  J. Pruvost,et al.  Evaluation of different strategies to produce biofuels from Nannochloropsis oculata and Chlorella vulgaris , 2016 .

[50]  S. Didi-Cohen,et al.  Inducible expression of Haematococcus oil globule protein in the diatom Phaeodactylum tricornutum: Association with lipid droplets and enhancement of TAG accumulation under nitrogen starvation , 2016 .

[51]  Chunxiao Sun,et al.  Effect of culture conditions on growth, fatty acid composition and DHA/EPA ratio of Phaeodactylum tricornutum , 2016 .

[52]  Duu-Jong Lee,et al.  Microalgae biorefinery: High value products perspectives. , 2017, Bioresource technology.

[53]  昌樹 大田,et al.  真正眼点藻Nannochloropsis sp. からの脂質抽出法 , 2018 .