Through a glass, darkly: Kinetics and reactors for complex mixtures. Syncrude innovation award lecture

The concepts of chemical reaction engineering are powerful, because the most basic design equations are applicable to a wide range of physical phenomena. For example, the applicability of the ideal continuous-flow stirred tank reactor goes far beyond chemical reactors to include biological, medical and environmental processes. The difficulty in analyzing these processes is not in formulating an appropriate reactor equation, but in modeling the chemical kinetics. The challenge is to define kinetic rate equations that allow for the mixtures of reactants and mixtures of catalysts, especially given incomplete information. Examples drawn from biology and medicine illustrate reaction kinetics that are complex due to the nature of the catalyst. In contrast, processes for upgrading of bitumen to more valuable products exhibit ill-defined reaction chemistry and mixtures of thousands of reactants and products. The need to define kinetics for such mixtures has given rise to several distinct approaches, including empirical rate equations, simplification to model reactions, lumped kinetics and Monte Carlo simulation. A summary of these methods shows that the key element for successful kinetic modeling is creative definition of a model, followed by vigorous testing of the model to determine its ability to predict performance. Les concepts du genie de la reaction chimique sont puissants, car les equations de conception les plus fondamentales sont applicables a un large eventail de phenomenes physiques. Par exemple, l'applicabilite du reacteur parfaitement agite a ecoulement continu ideal depasse largement le cadre des reacteurs chimiques pour inclure egalement les procedes biologiques, medicaux et environnementaux. La difficulte dans l'analyse de ces procedes ne reside pas dans la formulation d'une equation de reacteur appropriee, mais dans la modelisation des cinetiques chimiques. Le defi consiste a definir des equations cinetiques qui tiennent compte des melanges de reactifs et des melanges de catalyseurs, souvent a partir d'une connaissance partielle des phenomenes. Des exemples tires de la biologie et de la medecine illustrent des cinetiques de reaction qui sont complexes en raison de la nature du catalyseur. A l'oppose, les procedes de valorisation des bitumes ont une chimie reactionnelle mal definie et comportent des melanges de milliers de reactifs et de produits. Le besoin de definir des cinetiques pour de tels melanges a favorise l'emergence d'approches differentes, notamment les equations de vitesse empiriques, les reactions modeles, la cinetique de groupes et la simulation Monte Carlo. Un resume de ces modeles montre que la clef pour reussir la modelisation cinetique reside dans la definition originale d'un modele, suivie d'une verification rigoureuse du modele afin de determiner sa capacite a predire la performance.

[1]  Kenneth B. Bischoff,et al.  Lumping strategy. II: A system theoretic approach , 1987 .

[2]  Charles N. Satterfield,et al.  Catalytic hydrodenitrogenation of quinoline in a trickle-bed reactor. Comparison with vapor phase reaction , 1984 .

[3]  S. E. Voltz,et al.  A lumping and reaction scheme for catalytic cracking , 1976 .

[4]  D. T. Lynch,et al.  Oscillations during CO oxidation over supported metal catalysts. II: Effects of reactor operating conditions on oscillatory behavior for a (Pt―Pd)/Al2O3 catalyst , 1984 .

[5]  R. J. Quann,et al.  Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures , 1992 .

[6]  Bruce C. Gates,et al.  Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing , 1991 .

[7]  D. S. Montgomery,et al.  Structural features of Alberta oil sand bitumen and heavy oil asphaltenes , 1992 .

[8]  Matthew Neurock,et al.  CPU Issues in the Representation of the Molecular Structure of Petroleum Resid through Characterization, Reaction, and Monte Carlo Modeling , 1994 .

[9]  Bruce C. Gates,et al.  Hydrodesulfurization of dibenzothiophene catalyzed by sulfided CoO-MoO3γ-Al2O3: The reaction network , 1978 .

[10]  Matthew Neurock,et al.  Monte carlo simulation of complex reaction systems: molecular structure and reactivity in modelling heavy oils , 1990 .

[11]  F. O. Rice,et al.  Thermal Decomposition of Hydrocarbons, Resonance Stabilization and Isomerization of Free Radicals1 , 1943 .

[12]  Raffaella Ocone,et al.  Lumping nonlinear kinetics , 1988 .

[13]  G. Astarita Lumping nonlinear kinetics: Apparent overall order of reaction , 1989 .

[14]  M. Gray,et al.  Evidence for lidocaine-induced enzyme inactivation. , 1989, Journal of pharmaceutical sciences.

[15]  J. Tiedje,et al.  Kinetics of Phenol Biodegradation by an Immobilized Methanogenic Consortium , 1986, Applied and environmental microbiology.

[16]  Tadayuki Imanaka,et al.  Modeling of Cephalosporin C Production and Its Application to Fed-batch Culture , 1981 .

[17]  M. Chou,et al.  Continuum theory for lumping nonlinear reactions , 1988 .

[18]  Isao Mochida,et al.  Hydrodesulfurization reactivities of various sulfur compounds in vacuum gas oil , 1996 .

[19]  M. Gray,et al.  Pharmacokinetics of drugs that inactivate metabolic enzymes. , 1991, Journal of pharmaceutical sciences.

[20]  Kenneth B. Bischoff,et al.  Lumping strategy. 1. Introductory techniques and applications of cluster analysis , 1987 .

[21]  Rutherford Aris,et al.  On apparent second‐order kinetics , 1987 .

[22]  Matthew Neurock,et al.  Representation of the Molecular Structure of Petroleum Resid through Characterization and Monte Carlo Modeling , 1994 .

[23]  James Wei,et al.  Lumping Analysis in Monomolecular Reaction Systems. Analysis of Approximately Lumpable System , 1969 .

[24]  M. Gray,et al.  High-pressure thermal cracking of n-hexadecane , 1993 .

[25]  D. T. Lynch,et al.  Chaotic behavior of reaction systems : parallel cubic autocatalators , 1992 .

[26]  M. Gray,et al.  Kinetics of hydrodesulfurization of thiophenic and sulfide sulfur in athabasca bitumen , 1995 .

[27]  M. Gray Substrate inactivation of enzymes in vitro and in vivo. , 1989, Biotechnology advances.

[28]  E. C. Sanford,et al.  The relationship between chemical structure and reactivity of alberta bitumens and heavy oils , 1991 .

[29]  James Wei,et al.  The Structure and Analysis of Complex Reaction Systems , 1962 .

[30]  M. Gray,et al.  Kinetics of methanogenic degradation of phenol by activated‐carbon‐supported and granular biomass , 1992, Biotechnology and bioengineering.

[31]  D. Allen,et al.  Compound class modeling of hydropyrolysis , 1988 .

[32]  V. Weekman,et al.  Kinetics of catalytic cracking selectivity in fixed, moving, and fluid bed reactors , 1970 .

[33]  F. Kopinke,et al.  14C polyaromatics as radio isotope tracers for grafting analysis during heavy oil pyrolysis , 1994 .

[34]  P. L. Perchec,et al.  Visbreaking of Safaniya vacuum residue in the presence of additives , 1989 .