Goodness of fit assessment for a fractal model of stock markets

Abstract An assessment of the goodness of fit of a new stochastic model of stock dynamics is investigated. The model is the multifractional Brownian motion (mBm), introduced independently by Peltier and Levy Vehel (1995) [2] and Benassi (1997) [3]. The analysis concerns the (un)conditional distributions of log-variations of the Dow Jones Industrial Average (DJIA). By comparing the performance of mBm with respect to a Garch (1,1), we argue that the former captures the distributional features as well as the pathwise empirical ones displayed by the U.S. Dow Jones index, while the Garch (1,1) works better in global terms.

[1]  R. Peltier,et al.  Multifractional Brownian Motion : Definition and Preliminary Results , 1995 .

[2]  Enrique Sentana Quadratic Arch Models , 1995 .

[3]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[4]  S. Jaffard,et al.  Elliptic gaussian random processes , 1997 .

[5]  J. Coeurjolly,et al.  Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths , 2001 .

[6]  J. L. Véhel,et al.  Self-regulating processes , 2012 .

[7]  P. Guasoni NO ARBITRAGE UNDER TRANSACTION COSTS, WITH FRACTIONAL BROWNIAN MOTION AND BEYOND , 2006 .

[8]  Sergio Bianchi,et al.  Pathwise Identification Of The Memory Function Of Multifractional Brownian Motion With Application To Finance , 2005 .

[9]  Modelling stock price movements: multifractality or multifractionality? , 2007 .

[10]  Jacques Istas,et al.  Identifying the multifractional function of a Gaussian process , 1998 .

[11]  J. Zakoian Threshold heteroskedastic models , 1994 .

[12]  Carol Alexander,et al.  Market Models: A Guide to Financial Data Analysis , 2001 .

[13]  S. Bianchi,et al.  Modeling stock prices by multifractional Brownian motion: an improved estimation of the pointwise regularity , 2013 .

[14]  Jacques Lévy Véhel,et al.  Terrain Modeling with Multifractional Brownian Motion and Self-regulating Processes , 2010, ICCVG.

[15]  F. Comte,et al.  Long memory in continuous‐time stochastic volatility models , 1998 .

[16]  Andrew T. A. Wood,et al.  Simulation of Multifractional Brownian Motion , 1998, COMPSTAT.

[17]  Laurent E. Calvet,et al.  A Multifractal Model of Asset Returns , 1997 .

[18]  J. Coeurjolly,et al.  HURST EXPONENT ESTIMATION OF LOCALLY SELF-SIMILAR GAUSSIAN PROCESSES USING SAMPLE QUANTILES , 2005, math/0506290.

[19]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[20]  S. Gaci,et al.  Heterogeneities characterization from velocity logs using multifractional Brownian motion , 2011 .

[21]  P. Bertrand,et al.  Modelling NASDAQ Series by Sparse Multifractional Brownian Motion , 2012 .

[22]  J. L. Véhel,et al.  The Generalized Multifractional Brownian Motion , 2000 .

[23]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[24]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[25]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[26]  W. Schachermayer,et al.  Consistent price systems and face-lifting pricing under transaction costs , 2008, 0803.4416.

[27]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[28]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[29]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[30]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[31]  F. Comte,et al.  Affine fractional stochastic volatility models , 2012 .

[32]  Gabriel Lang,et al.  Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .

[33]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[34]  Sylvain Corlay,et al.  MULTIFRACTIONAL STOCHASTIC VOLATILITY MODELS , 2014 .