Goodness of fit assessment for a fractal model of stock markets
暂无分享,去创建一个
[1] R. Peltier,et al. Multifractional Brownian Motion : Definition and Preliminary Results , 1995 .
[2] Enrique Sentana. Quadratic Arch Models , 1995 .
[3] R. Chou,et al. ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .
[4] S. Jaffard,et al. Elliptic gaussian random processes , 1997 .
[5] J. Coeurjolly,et al. Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths , 2001 .
[6] J. L. Véhel,et al. Self-regulating processes , 2012 .
[7] P. Guasoni. NO ARBITRAGE UNDER TRANSACTION COSTS, WITH FRACTIONAL BROWNIAN MOTION AND BEYOND , 2006 .
[8] Sergio Bianchi,et al. Pathwise Identification Of The Memory Function Of Multifractional Brownian Motion With Application To Finance , 2005 .
[9] Modelling stock price movements: multifractality or multifractionality? , 2007 .
[10] Jacques Istas,et al. Identifying the multifractional function of a Gaussian process , 1998 .
[11] J. Zakoian. Threshold heteroskedastic models , 1994 .
[12] Carol Alexander,et al. Market Models: A Guide to Financial Data Analysis , 2001 .
[13] S. Bianchi,et al. Modeling stock prices by multifractional Brownian motion: an improved estimation of the pointwise regularity , 2013 .
[14] Jacques Lévy Véhel,et al. Terrain Modeling with Multifractional Brownian Motion and Self-regulating Processes , 2010, ICCVG.
[15] F. Comte,et al. Long memory in continuous‐time stochastic volatility models , 1998 .
[16] Andrew T. A. Wood,et al. Simulation of Multifractional Brownian Motion , 1998, COMPSTAT.
[17] Laurent E. Calvet,et al. A Multifractal Model of Asset Returns , 1997 .
[18] J. Coeurjolly,et al. HURST EXPONENT ESTIMATION OF LOCALLY SELF-SIMILAR GAUSSIAN PROCESSES USING SAMPLE QUANTILES , 2005, math/0506290.
[19] P. Young,et al. Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.
[20] S. Gaci,et al. Heterogeneities characterization from velocity logs using multifractional Brownian motion , 2011 .
[21] P. Bertrand,et al. Modelling NASDAQ Series by Sparse Multifractional Brownian Motion , 2012 .
[22] J. L. Véhel,et al. The Generalized Multifractional Brownian Motion , 2000 .
[23] R. Baillie,et al. Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .
[24] L. Glosten,et al. On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .
[25] T. Bollerslev,et al. Generalized autoregressive conditional heteroskedasticity , 1986 .
[26] W. Schachermayer,et al. Consistent price systems and face-lifting pricing under transaction costs , 2008, 0803.4416.
[27] Daniel B. Nelson. CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .
[28] R. Cont. Empirical properties of asset returns: stylized facts and statistical issues , 2001 .
[29] C. Granger,et al. A long memory property of stock market returns and a new model , 1993 .
[30] R. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .
[31] F. Comte,et al. Affine fractional stochastic volatility models , 2012 .
[32] Gabriel Lang,et al. Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .
[33] B. Mandelbrot,et al. Fractional Brownian Motions, Fractional Noises and Applications , 1968 .
[34] Sylvain Corlay,et al. MULTIFRACTIONAL STOCHASTIC VOLATILITY MODELS , 2014 .