Seismic Data Restoration Based on Compressive Sensing Using Regularization and Zero‐Norm Sparse Optimization

Seismic data restoration is an ill-posed inverse problem. Based on the sparseness of seismic data in the curvelet domain, this problem can be transformed into a sparse optimization problem. This paper proposes to use the approximation of zero-norm as the objective function and develop a projected gradient method to solve the corresponding minimization problem. We also employ a recently proposed piecewise random sampling method which can control the sampling gap and keep the randomness of sampling. Numerical results show that the projected gradient method can reduce the amount of computation greatly, and the restoration based on the piecewise random sampling is better than that of random sub-sampling.

[1]  Yanfei Wang,et al.  Fast realization algorithms for determining regularization parameters in linear inverse problems , 2001 .

[2]  Necati Gulunay,et al.  Seismic trace interpolation in the Fourier transform domain , 2003 .

[3]  Christian Jutten,et al.  A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed $\ell ^{0}$ Norm , 2008, IEEE Transactions on Signal Processing.

[4]  Joshua Ronen,et al.  Wave‐equation trace interpolation , 1987 .

[5]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[6]  Hua Yang,et al.  On the effective inversion by imposing a priori information for retrieval of land surface parameters , 2009 .

[7]  E. Berg,et al.  New insights into one-norm solvers from the Pareto curve , 2008 .

[8]  Changchun Yang,et al.  Accelerating migration deconvolution using a nonmonotone gradient method , 2010 .

[9]  Xue Feng,et al.  Retrieval of the aerosol particle size distribution function by incorporating a priori information , 2007 .

[10]  Naihua Xiu,et al.  Regularizing active set method for nonnegatively constrained ill-posed multichannel image restoration problem. , 2009, Applied optics.

[11]  Joel A. Tropp,et al.  Sparse Approximation Via Iterative Thresholding , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[12]  J. Claerbout Earth Soundings Analysis: Processing Versus Inversion , 1992 .

[13]  Yanfei Wang,et al.  Seismic impedance inversion using l 1-norm regularization and gradient descent methods , 2010 .

[14]  Mauricio D. Sacchi,et al.  Fourier Reconstruction of Nonuniformly Sampled, Aliased Seismic Data , 2022 .

[15]  Mauricio D. Sacchi,et al.  Estimation of the discrete Fourier transform, a linear inversion approach , 1996 .

[16]  F. Herrmann,et al.  Simply denoise: Wavefield reconstruction via jittered undersampling , 2008 .

[17]  Robert H. Stolt,et al.  Seismic data mapping and reconstruction , 2002 .

[18]  S. Spitz Seismic trace interpolation in the F-X domain , 1991 .

[19]  H. L. Taylor,et al.  Deconvolution with the l 1 norm , 1979 .

[20]  Jingjie Cao,et al.  Recovery of seismic wavefields based on compressive sensing by an l1-norm constrained trust region method and the piecewise random subsampling , 2011, Geophysical Journal International.

[21]  C. O. H. Hindriks,et al.  Reconstruction of band‐limited signals, irregularly sampled along one spatial direction , 1999 .

[22]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[23]  Changchun Yang,et al.  A review on restoration of seismic wavefields based on regularization and compressive sensing , 2011 .

[24]  D. J. Verschuur,et al.  Data Reconstruction By Generalized Deconvolution , 2004 .

[25]  Changchun Yang,et al.  ON TIKHONOV REGULARIZATION AND COMPRESSIVE SENSING FOR SEISMIC SIGNAL PROCESSING , 2012 .