Assessment of grid adaptation criteria for steady, two-dimensional, inviscid flows in non-ideal compressible fluids

Two-dimensional simulations are carried out to assess standard grid adaptation criteria, widely used for ideal flows, for steady inviscid flows in the proximity of the liquid-vapor saturation curve, where non-ideal compressible-fluid behavior is expected. A van der Waals fluid description of the thermodynamic properties is assumed to account for non-ideal effects at least qualitatively. Nitrogen under-expanded nozzle jets are chosen as the reference flow to assess different adaptation criteria. Isotropic and anisotropic error estimators based on the derivatives of flow variables prove to be suitable to capture the rarefaction, the reflected shock and the constant-pressure jet boundary. Both density and Mach-based estimators are found to be very suitable to drive grid adaptation in the non-ideal compressible-fluid regime, which is characterized by large fluid compressibility. Then, similar adaptation criteria are used to simulate under-expanded nozzle jets of the siloxane MDM, a high molecular complexity fluid for which the van der Waals model predicts the existence of a thermodynamic region where the fundamental derivative of gasdynamics has values less than one. In this region, Mach number estimators prove to be more effective because of the non-ideal dependence of the speed of sound on the density and the temperature.

[1]  Michael Andrew Park,et al.  Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation , 2004 .

[2]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[3]  Rainald Löhner,et al.  Mesh adaptation in fluid mechanics , 1995 .

[4]  Gerd Brunner,et al.  Supercritical fluids: technology and application to food processing , 2005 .

[5]  P. A. Thompson,et al.  A Fundamental Derivative in Gasdynamics , 1971 .

[6]  Shigeru Obayashi,et al.  Numerical simulation of underexpanded plumes using upwind algorithms , 1988 .

[7]  V. Selmin,et al.  The node-centred finite volume approach: bridge between finite differences and finite elements , 1993 .

[8]  Simona Perotto,et al.  A Priori Anisotropic Mesh Adaptation on Implicitly Defined Surfaces , 2015, SIAM J. Sci. Comput..

[9]  Timothy J. Baker,et al.  Mesh adaptation strategies for problems in fluid dynamics , 1997 .

[10]  Giuseppe Quaranta,et al.  Finite-volume solution of two-dimensional compressible flows over dynamic adaptive grids , 2015, J. Comput. Phys..

[11]  C. Dobrzynski,et al.  Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations , 2008, IMR.

[12]  Mark S. Shephard,et al.  Automated adaptive time-discontinuous finite element method for unsteady compressible airfoil aerodynamics , 1994 .

[13]  Giuseppe Quaranta,et al.  Arbitrary Lagrangian Eulerian formulation for two-dimensional flows using dynamic meshes with edge swapping , 2011, J. Comput. Phys..

[14]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[15]  Juan J. Alonso,et al.  Numerical and Mesh Resolution Requirements for Accurate Sonic Boom Prediction of Complete Aircraf , 2004 .

[16]  M. J. Aftosmis,et al.  A second-order TVD method for the solution of the 3D Euler and Navier-Stokes equations on adaptively refined meshes , 1993 .

[17]  Antti Uusitalo,et al.  Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications, and an Outlook to the Future , 2015 .

[18]  Dimitri J. Mavriplis,et al.  Error estimation and adaptation for functional outputs in time-dependent flow problems , 2009, Journal of Computational Physics.

[19]  D. Darmofal,et al.  Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .

[20]  Seongim Choi,et al.  Numerical and Mesh Resolution Requirements for Accurate Sonic Boom Prediction , 2009 .

[21]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[22]  Gary J. Page,et al.  Numerical predictions of turbulent underexpanded sonic jets using a pressure-based methodology , 2001 .

[23]  Stefano Rebay,et al.  Real-gas effects in Organic Rankine Cycle turbine nozzles , 2008 .

[24]  Yongsheng Lian,et al.  Feature-Based Grid Adaption for the Study of Dynamic Stall , 2014 .

[25]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .

[26]  W. K. Anderson,et al.  Grid convergence for adaptive methods , 1991 .

[27]  Martial Sauceau,et al.  Particle generation for pharmaceutical applications using supercritical fluid technology , 2004 .

[28]  D. Mavriplis UNSTRUCTURED GRID TECHNIQUES , 1997 .

[29]  P. George,et al.  Mesh Generation: Application to Finite Elements , 2007 .

[30]  K. Matsuo,et al.  Pitot pressures of correctly-expanded and underexpanded free jets from axisymmetric supersonic nozzles , 2000 .

[31]  R. Löhner An adaptive finite element scheme for transient problems in CFD , 1987 .

[32]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[33]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[34]  Alberto Guardone,et al.  Molecular interpretation of nonclassical gas dynamics of dense vapors under the van der Waals model , 2006 .

[35]  Hiroshi Katanoda,et al.  Effect of Reynolds Number on Pitot-Pressure Distributions in Underexpanded Supersonic Freejets , 2001 .

[36]  Michael J. Aftosmis,et al.  Multilevel Error Estimation and Adaptive h-Refinement for Cartesian Meshes with Embedded Boundaries , 2002 .

[37]  L. Vigevano,et al.  Numerical Simulations of Under-Expanded Nozzle Flows of Dense Gases , 2007 .

[38]  Onkar Sahni,et al.  Adaptive boundary layer meshing for viscous flow simulations , 2008, Engineering with Computers.

[39]  G. Angelino,et al.  Multicomponent Working Fluids For Organic Rankine Cycles (ORCs) , 1998 .

[40]  V. Dolejší Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes , 1998 .

[41]  Alfred Kluwick,et al.  Transonic nozzle flow of dense gases , 1993, Journal of Fluid Mechanics.

[42]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[43]  Y. Kallinderis,et al.  Adaptation methods for a new Navier-Stokes algorithm , 1989 .

[44]  David E. Keyes,et al.  Aerodynamic applications of Newton- Krylov-Schwarz solvers , 1995 .

[45]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .