Large scale simulations of complex systems part i: conceptual framework

In this working document, we report on a new approach to high performance simulation. The main inspiration to this approach is the concept of complex systems: disparate elements with well-defined interactions rules and non nonlinear emergent macroscopic behavior. We provide arguments and mechanisms to abstract temporal and spatial locality from the application and to incorporate this locality into the complete design cycle of modeling and simulation on parallel architectures. Although the main application area discussed here is physics, the presented Virtual Particle (VIP) paradigm in the context of Dynamic Complex Systems (DCS), is applicable to other areas of compute intensive applications. Part I deals with the concepts behind VIP and DCS models. A formal approach to the mapping of application task-graphs to machine task-graphs is presented. The major part of section 3 has recently (July 1997) been accepted for publication in Complexity. In Part II we will elaborate on the execution behavior of a series of large-scale simulations using the concepts presented in this document. Note that this is a working document, where we present ongoing work on a formal description of DCS and compile new ideas and results of our research group.

[1]  M. W. Shields An Introduction to Automata Theory , 1988 .

[2]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[3]  Andrew W. Appel,et al.  An Efficient Program for Many-Body Simulation , 1983 .

[4]  P. Cvitanović Universality in Chaos , 1989 .

[5]  M Mitchell,et al.  The evolution of emergent computation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[6]  P. A. Dufort,et al.  The complexity and entropy of Turing machines , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[7]  C. P. Williams,et al.  Phase transitions and coarse-grained search , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[8]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[9]  Peter M. A. Sloot,et al.  Application of time warp to parallel simulations with asynchronous cellular automata , 1993 .

[10]  Wolfram,et al.  Undecidability and intractability in theoretical physics. , 1985, Physical review letters.

[11]  Tad Hogg,et al.  Using Deep Structure to Locate Hard Problems , 1992, AAAI.

[12]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[13]  Peter M. A. Sloot,et al.  Comparison of vector and parallel implementations of the simulated annealing algorithm , 1995, Future generations computer systems.

[14]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[15]  Joseph Ford,et al.  Analytically solvable dynamical systems which are not integrable , 1984 .

[16]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[17]  M. B. Pour-El,et al.  Noncomputability in models of physical phenomena , 1982 .

[18]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[19]  Wentian Li Mutual information functions versus correlation functions , 1990 .

[20]  Amnon Aharony,et al.  Fractal growth , 1995 .

[21]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[22]  Louis,et al.  Self-organized criticality in Laplacian growth. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[23]  Geoffrey Fox,et al.  Achievements and prospects for parallel computing , 1991, Concurr. Pract. Exp..

[24]  G. Chaitin Gödel's theorem and information , 1982 .

[25]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[26]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[27]  Bernard Manderick,et al.  Fine-Grained Parallel Genetic Algorithms , 1989, ICGA.

[28]  Robert Azencott,et al.  Simulated annealing : parallelization techniques , 1992 .

[29]  Lowe,et al.  Effect of Nutrient Diffusion and Flow on Coral Morphology. , 1996, Physical review letters.

[30]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[31]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[32]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[33]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[34]  Dr. David W. Pearson,et al.  Artificial Neural Nets and Genetic Algorithms , 1995, Springer Vienna.

[35]  Alstrom Self-organized criticality and fractal growth. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[36]  L. Sander Fractal growth processes , 1986, Nature.

[37]  Hiroshi Fujikawa,et al.  Bacterial Fractal Growth in the Concentration Field of Nutrient , 1991 .

[38]  Gregory B. Sorkin Simulated annealing on fractals: theoretical analysis and relevance for combinatorial optimization , 1990 .

[39]  Christopher G. Langton,et al.  Studying artificial life with cellular automata , 1986 .

[40]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[41]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[42]  Moore,et al.  Unpredictability and undecidability in dynamical systems. , 1990, Physical review letters.

[43]  Jaap A. Kaandorp,et al.  Fractal modelling - growth and form in biology , 1994 .

[44]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[45]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[46]  Pierre Lallemand,et al.  Lattice Gas Hydrodynamics in Two and Three Dimensions , 1987, Complex Syst..

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  T. Hogg Statistical mechanics of combinatorial search , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[49]  P. Hogeweg Cellular automata as a paradigm for ecological modeling , 1988 .

[50]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[51]  Izidor Gertner,et al.  On the Complexity of Scheduling Problems for Parallel/Pipelined Machines , 1989, IEEE Trans. Computers.

[52]  Peter M. A. Sloot Modelling for Parallel Simulation: Possibilities and Pifalls , 1995, EUROSIM.

[53]  Pierluigi Crescenzi,et al.  Introduction to the theory of complexity , 1994, Prentice Hall international series in computer science.

[54]  Peter M. A. Sloot,et al.  MAP Final Report , 1995 .

[55]  Frisch,et al.  Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .

[56]  Peter Grassberger,et al.  Long-range effects in an elementary cellular automaton , 1986 .

[57]  David E. Goldberg,et al.  A Note on Boltzmann Tournament Selection for Genetic Algorithms and Population-Oriented Simulated Annealing , 1990, Complex Syst..

[58]  Peter M. A. Sloot,et al.  A dynamic load balancing system for parallel cluster computing , 1996, Future Gener. Comput. Syst..

[59]  A. Hansen,et al.  A direct mapping between Eden growth model and directed polymers in random media , 1991 .

[60]  P.M.A. Sloot High Performance Simulation , 1995 .

[61]  Hans-Paul Schwefel,et al.  Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.

[62]  A. E. Eiben,et al.  Global Convergence of Genetic Algorithms: A Markov Chain Analysis , 1990, PPSN.

[63]  P. Stadler,et al.  The landscape of the traveling salesman problem , 1992 .

[64]  Peter M. A. Sloot,et al.  Breaking the Curse of Dynamics by Task Migration: Pilot Experiments in the Polder Metacomputer , 1997, PVM/MPI.

[65]  Correlation structure of the landscape of the graph-bipartitioning problem , 1992 .

[66]  Shiyi Chen,et al.  Lattice Boltzmann computational fluid dynamics in three dimensions , 1992 .

[67]  Peter M. A. Sloot,et al.  Load Balancing by Redundant Decomposition and Mapping , 1996, HPCN Europe.

[68]  Christopher L. Barrett,et al.  Elements of a Theory of Simulation , 1995, ECAL.

[69]  James P. Crutchfield,et al.  Dynamics, computation, and the “edge of chaos”: a re-examination , 1993, adap-org/9306003.

[70]  Alfons G. Hoekstra,et al.  New computational techniques to simulate light scattering from arbitrary particles , 1993 .

[71]  Tommaso Toffoli,et al.  Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in M , 1984 .

[72]  J. Doug Tygar,et al.  The computability and complexity of optical beam tracing , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[73]  J. Machta,et al.  The parallel complexity of growth models , 1994 .

[74]  Peter M. A. Sloot,et al.  Dynamic Complex Systems (DCS): A New Approach to Parallel Computing in Computational Physics , 1995 .

[75]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[76]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[77]  Evelyn Sander,et al.  Fractals and fractal correlations , 1994 .

[78]  Athanassios Siapas,et al.  Criticality and Parallelism in Combinatorial Optimization , 1996, Science.

[79]  D. Turcotte,et al.  Self-organized criticality , 1999 .

[80]  Johan De Keyser,et al.  Load Balancing Data Parallel Programs on Distributed Memory Computers , 1993, Parallel Comput..

[81]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[82]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[83]  Stephen R. Tate,et al.  The Complexity of N-body Simulation , 1993, ICALP.

[84]  Geoffrey C. Fox,et al.  Allocating data to multicomputer nodes by physical optimization algorithms for loosely synchronous computations , 1992, Concurr. Pract. Exp..

[85]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[86]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[87]  E. Berlekamp,et al.  Winning Ways for Your Mathematical Plays , 1983 .

[88]  P. Meakin,et al.  A new model for biological pattern formation. , 1986, Journal of theoretical biology.

[89]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[90]  G. C. Fox,et al.  Solving Problems on Concurrent Processors , 1988 .

[91]  Zbigniew Koza The equivalence of the DLA and a hydrodynamic model , 1991 .

[92]  Carlo Rubbia Report of the EEC Working Group on High-Performance Computing , 1992, Supercomputer.

[93]  Mark A. Johnson,et al.  Solving problems on concurrent processors. Vol. 1: General techniques and regular problems , 1988 .

[94]  Sauro Succi,et al.  a Review of the Lattice Boltzmann Method , 1993 .

[95]  Peter M. A. Sloot,et al.  A Parallel Cellular Genetic Algorithm Used in Finite Element Simulation , 1996, PPSN.

[96]  Marco Tomassini,et al.  The Parallel Genetic Cellular Automata: Application to Global Function Optimization , 1993 .

[97]  Peter M. A. Sloot,et al.  Lattice-Boltzmann hydrodynamics on parallel systems , 1998 .

[98]  Gary D. Doolen Lattice Gas Methods For Partial Differential Equations , 1990 .

[99]  Jonathan Machta The computational complexity of pattern formation , 1993 .

[100]  O. Plat,et al.  Self Organized Criticality in Simple Growth Models , 1993 .

[101]  Martina Gorges-Schleuter,et al.  ASPARAGOS An Asynchronous Parallel Genetic Optimization Strategy , 1989, ICGA.