Prime tight frames

We introduce a class of finite tight frames called prime tight frames and prove some of their elementary properties. In particular, we show that any finite tight frame can be written as a union of prime tight frames. We then characterize all prime harmonic tight frames and use thischaracterization to suggest effective analysis and synthesis computation strategies for such frames. Finally, we describe all prime frames constructed from the spectral tetris method, and, as a byproduct, we obtain a characterization of when the spectral tetris construction works for redundancies below two.

[1]  A. Paulraj,et al.  MIMO Wireless Linear Precoding , 2007, IEEE Signal Processing Magazine.

[2]  Vivek K Goyal,et al.  Quantized Frame Expansions with Erasures , 2001 .

[3]  A. Ron Review of An introduction to Frames and Riesz bases, applied and numerical Harmonic analysis by Ole Christensen Birkhäuser, Basel, 2003 , 2005 .

[4]  John J. Benedetto,et al.  Finite Normalized Tight Frames , 2003, Adv. Comput. Math..

[5]  Peter G. Casazza,et al.  A Physical Interpretation of Tight Frames , 2006 .

[6]  Thomas Strohmer,et al.  GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.

[7]  Peter G. Casazza,et al.  Constructing tight fusion frames , 2011 .

[8]  Peter G. Casazza,et al.  FUSION FRAMES: EXISTENCE AND CONSTRUCTION , 2009 .

[9]  W. Marsden I and J , 2012 .

[10]  John J. Benedetto,et al.  Geometric Properties of Grassmannian Frames for and , 2006, EURASIP J. Adv. Signal Process..

[11]  Matthew J. Hirn The number of harmonic frames of prime order , 2010 .

[12]  Gitta Kutyniok,et al.  Sparsity and spectral properties of dual frames , 2012, 1204.5062.

[13]  E. Hewitt,et al.  Abstract Harmonic Analysis , 1963 .

[14]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part I) , 2007, IEEE Signal Processing Magazine.

[15]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[16]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[17]  T. Y. Lam,et al.  On Vanishing Sums of Roots of Unity , 1995 .

[18]  Peter G. Casazza,et al.  Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..

[19]  Keri Kornelson,et al.  Ellipsoidal tight frames and projection decompositions of operators , 2003 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Deguang Han,et al.  Frames for Undergraduates , 2007 .

[22]  Keri Kornelson,et al.  Necessary and sufficient conditions to perform Spectral Tetris , 2012 .

[23]  Keri Kornelson,et al.  Convolutional frames and the frame potential , 2005 .

[24]  B. D. Johnson,et al.  Frame potential and finite abelian groups , 2008, 0801.3813.

[25]  Georgios B. Giannakis,et al.  Achieving the Welch bound with difference sets , 2005, IEEE Transactions on Information Theory.

[26]  Dustin G. Mixon,et al.  Full Spark Frames , 2011, 1110.3548.

[27]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[28]  Gitta Kutyniok,et al.  Data Separation by Sparse Representations , 2011, Compressed Sensing.

[29]  A. Robert Calderbank,et al.  Sparse fusion frames: existence and construction , 2011, Adv. Comput. Math..

[30]  John J. Benedetto,et al.  Geometric Properties of Grassmannian Frames for Open image in new window and Open image in new window , 2006 .

[31]  Nate Strawn,et al.  Finite Frame Varieties: Nonsingular Points, Tangent Spaces, and Explicit Local Parameterizations , 2011 .

[32]  Gary Sivek On Vanishing Sums of Distinct Roots of Unity , 2010, Integers.

[33]  Edwin Hewitt,et al.  Structure of topological groups, integration theory, group representations , 1963 .

[34]  Peter G. Casazza,et al.  Real equiangular frames , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[35]  V. Paulsen,et al.  Frames, graphs and erasures , 2004, math/0406134.

[36]  Terence Tao,et al.  Fuglede's conjecture is false in 5 and higher dimensions , 2003, math/0306134.

[37]  John J. Benedetto,et al.  Geometric Properties of Grassmannian Frames for R 2 and R 3 , 2004 .

[38]  Shayne Waldron,et al.  A classification of the harmonic frames up to unitary equivalence , 2011 .

[39]  Shayne Waldron,et al.  Generalized Welch bound equality sequences are tight fram , 2003, IEEE Trans. Inf. Theory.

[40]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[41]  J. J. Seidel,et al.  Definitions for spherical designs , 2001 .

[42]  Mátyás A. Sustik,et al.  On the existence of equiangular tight frames , 2007 .

[43]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part II) , 2007, IEEE Signal Processing Magazine.