Prime tight frames
暂无分享,去创建一个
[1] A. Paulraj,et al. MIMO Wireless Linear Precoding , 2007, IEEE Signal Processing Magazine.
[2] Vivek K Goyal,et al. Quantized Frame Expansions with Erasures , 2001 .
[3] A. Ron. Review of An introduction to Frames and Riesz bases, applied and numerical Harmonic analysis by Ole Christensen Birkhäuser, Basel, 2003 , 2005 .
[4] John J. Benedetto,et al. Finite Normalized Tight Frames , 2003, Adv. Comput. Math..
[5] Peter G. Casazza,et al. A Physical Interpretation of Tight Frames , 2006 .
[6] Thomas Strohmer,et al. GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.
[7] Peter G. Casazza,et al. Constructing tight fusion frames , 2011 .
[8] Peter G. Casazza,et al. FUSION FRAMES: EXISTENCE AND CONSTRUCTION , 2009 .
[9] W. Marsden. I and J , 2012 .
[10] John J. Benedetto,et al. Geometric Properties of Grassmannian Frames for and , 2006, EURASIP J. Adv. Signal Process..
[11] Matthew J. Hirn. The number of harmonic frames of prime order , 2010 .
[12] Gitta Kutyniok,et al. Sparsity and spectral properties of dual frames , 2012, 1204.5062.
[13] E. Hewitt,et al. Abstract Harmonic Analysis , 1963 .
[14] J. Kovacevic,et al. Life Beyond Bases: The Advent of Frames (Part I) , 2007, IEEE Signal Processing Magazine.
[15] J. Seidel,et al. Spherical codes and designs , 1977 .
[16] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[17] T. Y. Lam,et al. On Vanishing Sums of Roots of Unity , 1995 .
[18] Peter G. Casazza,et al. Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..
[19] Keri Kornelson,et al. Ellipsoidal tight frames and projection decompositions of operators , 2003 .
[20] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[21] Deguang Han,et al. Frames for Undergraduates , 2007 .
[22] Keri Kornelson,et al. Necessary and sufficient conditions to perform Spectral Tetris , 2012 .
[23] Keri Kornelson,et al. Convolutional frames and the frame potential , 2005 .
[24] B. D. Johnson,et al. Frame potential and finite abelian groups , 2008, 0801.3813.
[25] Georgios B. Giannakis,et al. Achieving the Welch bound with difference sets , 2005, IEEE Transactions on Information Theory.
[26] Dustin G. Mixon,et al. Full Spark Frames , 2011, 1110.3548.
[27] Joseph M. Renes,et al. Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.
[28] Gitta Kutyniok,et al. Data Separation by Sparse Representations , 2011, Compressed Sensing.
[29] A. Robert Calderbank,et al. Sparse fusion frames: existence and construction , 2011, Adv. Comput. Math..
[30] John J. Benedetto,et al. Geometric Properties of Grassmannian Frames for Open image in new window and Open image in new window , 2006 .
[31] Nate Strawn,et al. Finite Frame Varieties: Nonsingular Points, Tangent Spaces, and Explicit Local Parameterizations , 2011 .
[32] Gary Sivek. On Vanishing Sums of Distinct Roots of Unity , 2010, Integers.
[33] Edwin Hewitt,et al. Structure of topological groups, integration theory, group representations , 1963 .
[34] Peter G. Casazza,et al. Real equiangular frames , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.
[35] V. Paulsen,et al. Frames, graphs and erasures , 2004, math/0406134.
[36] Terence Tao,et al. Fuglede's conjecture is false in 5 and higher dimensions , 2003, math/0306134.
[37] John J. Benedetto,et al. Geometric Properties of Grassmannian Frames for R 2 and R 3 , 2004 .
[38] Shayne Waldron,et al. A classification of the harmonic frames up to unitary equivalence , 2011 .
[39] Shayne Waldron,et al. Generalized Welch bound equality sequences are tight fram , 2003, IEEE Trans. Inf. Theory.
[40] Lloyd R. Welch,et al. Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[41] J. J. Seidel,et al. Definitions for spherical designs , 2001 .
[42] Mátyás A. Sustik,et al. On the existence of equiangular tight frames , 2007 .
[43] J. Kovacevic,et al. Life Beyond Bases: The Advent of Frames (Part II) , 2007, IEEE Signal Processing Magazine.