In addition to its well known calcemic actions, 1,25-dihydroxyvitamin D-3 [1,25(OH)(2)D] exhibits differentiating and antiproliferative effects in several types of cancer cells. 1,25(OH)(2)D receptors (VDR) as well as 1,25(OH)(2)D-mediated growth-inhibition have been demonstrated in human prostate cancer cell lines. In order to further develop model systems for the study of 1,25(OH)(2)D action and to elucidate the mechanism of growth-inhibition, we studied several human prostate cell lines immortalized with either simian virus 40 (SV40) or human papillomavirus type 18 (HPV). The SV40-transformed cell lines P69SV40-T and P153SV40-T were not growth-inhibited by 1,25(OH)(2)D at concentrations as high as 100 nM, whereas the HPV-transformed cells PZ-HPV-7 and CA-HPV-10 were growth-inhibited. All cell lines expressed VDR, and VDR mRNA was demonstrated by Northern blot analysis. All cells exhibited induction of 24-hydroxylase mRNA, a 1,25(OH)(2)D responsive gene, after 1,25(OH)(2)D treatment. In an attempt to understand the apparent dissociation of 1,25(OH)(2)D actions in the SV40-transformed cells, we turned to the human prostate cancer cell line DU 145. These cells, like the SV40-transformed cells, are not growth-inhibited but demonstrate induction of 24-hydroxylase mRNA after 1,25(OH)(2)D treatment. DU 145 cells contain a mutated retinoblastoma gene (Rb) which contributes to their uncontrolled growth, analogous to the disruption of Rb by SV40 and HPV. We compared DU,145 cells to DU 145 cells transfected with normal Rb (DU 145/Rb). Similar to DU 145, DU 145/Rb cells were not growth-inhibited by 1,25(OH)(2)D, while 24-hydroxylase mRNA was induced. These results suggest that divergent pathways mediate the growth-inhibitory effect of 1,25(OH)(2)D and its induction of 24-hydroxylase. It also appears that the antiproliferative effect of 1,25(OH)(2)D is mediated by an Rb-independent mechanism.