Robust multiphase topology optimization accounting for manufacturing uncertainty via stochastic collocation

This paper presents a computational framework for multimaterial topology optimization under uncertainty. We combine stochastic collocation with design sensitivity analysis to facilitate robust design optimization. The presence of uncertainty is motivated by the induced scatter in the mechanical properties of candidate materials in the additive manufacturing process. The effective elastic modulus in each finite element is obtained by an interpolation scheme which is parameterized with three distinct elastic moduli corresponding to the available design materials. The parametrization enables the SIMP-style penalization of intermediate material properties, thus ensuring convergence to a discrete manufacturable design. We consider independent random variables for the elastic modulus of different materials and generate designs that minimize the variability in the performance, namely structural compliance. We use a newly developed quadrature rule, designed quadrature, to compute statistical moments with reduced computational cost. We show our approach on numerical benchmark problems of linear elastic continua where we demonstrate the improved performance of robust designs compared with deterministic designs. We provide the MATLAB implementation of our approach.

[1]  S. Torquato,et al.  Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997 .

[2]  Cetin Batur Dilgen,et al.  Density based topology optimization of turbulent flow heat transfer systems , 2018 .

[3]  Zheng-Dong Ma,et al.  Robust Topology Optimization Based on Stochastic Collocation Methods under Loading Uncertainties , 2015 .

[4]  Jesús Martínez-Frutos,et al.  Evolutionary topology optimization of continuum structures under uncertainty using sensitivity analysis and smooth boundary representation , 2018, Computers & Structures.

[5]  Glaucio H. Paulino,et al.  Topology optimization with manufacturing constraints: A unified projection-based approach , 2016, Adv. Eng. Softw..

[6]  Anders Clausen,et al.  Efficient topology optimization in MATLAB using 88 lines of code , 2011 .

[7]  Xiaoping Qian,et al.  Undercut and overhang angle control in topology optimization: A density gradient based integral approach , 2017 .

[8]  Jesús Martínez-Frutos,et al.  Robust shape optimization of continuous structures via the level set method , 2016 .

[9]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[10]  Kai A. James,et al.  Optimal design of compliant mechanisms using functionally graded materials , 2017 .

[11]  O. Sigmund,et al.  A density-based topology optimization methodology for thermoelectric energy conversion problems , 2018 .

[12]  D. Tortorelli,et al.  Design sensitivity analysis: Overview and review , 1994 .

[13]  K. Maute,et al.  Level set topology optimization of structural problems with interface cohesion , 2017 .

[14]  Matthijs Langelaar,et al.  Topology optimization of 3D self-supporting structures for additive manufacturing , 2016 .

[15]  Julián A. Norato,et al.  Stress-based topology optimization for continua , 2010 .

[16]  James K. Guest,et al.  Topology optimization considering overhang constraints: Eliminating sacrificial support material in additive manufacturing through design , 2016 .

[17]  James K. Guest,et al.  Achieving minimum length scale in topology optimization using nodal design variables and projection functions , 2004 .

[18]  Kurt Maute,et al.  Multiscale Modeling of Non-Local Damage Evolution in Lithium-Ion Batteries , 2017 .

[19]  O. Sigmund,et al.  Design of passive coolers for light-emitting diode lamps using topology optimisation , 2018, International Journal of Heat and Mass Transfer.

[20]  Oded Amir,et al.  Topology optimization for additive manufacturing: Accounting for overhang limitations using a virtual skeleton , 2017 .

[21]  Yi Min Xie,et al.  Shape and topology design for heat conduction by Evolutionary Structural Optimization , 1999 .

[22]  O. Sigmund,et al.  Topology optimization considering material and geometric uncertainties using stochastic collocation methods , 2012 .

[23]  Ali Ghoddosian,et al.  Topology optimization of continuum structures under hybrid uncertainties , 2018 .

[24]  Xu Guo,et al.  Multi-scale robust design and optimization considering load uncertainties , 2015 .

[25]  Jesús Martínez-Frutos,et al.  Risk-averse structural topology optimization under random fields using stochastic expansion methods , 2018 .

[26]  T. E. Bruns,et al.  Topology optimization of non-linear elastic structures and compliant mechanisms , 2001 .

[27]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[28]  R. Ghanem The Nonlinear Gaussian Spectrum of Log-Normal Stochastic Processes and Variables , 1999 .

[29]  Glaucio H. Paulino,et al.  Bridging topology optimization and additive manufacturing , 2015, Structural and Multidisciplinary Optimization.

[30]  Charlie C. L. Wang,et al.  Current and future trends in topology optimization for additive manufacturing , 2018 .

[31]  Sankaran Mahadevan,et al.  Uncertainty quantification in prediction of material properties during additive manufacturing , 2017 .

[32]  Florian Heiss,et al.  Likelihood approximation by numerical integration on sparse grids , 2008 .

[33]  Mu Zhu,et al.  Casting and Milling Restrictions in Topology Optimization via Projection-Based Algorithms , 2012, DAC 2012.

[34]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[35]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[36]  Martin Leary,et al.  Optimal topology for additive manufacture: A method for enabling additive manufacture of support-free optimal structures , 2014 .

[37]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[38]  G. Allaire,et al.  Shape and topology optimization of the robust compliance via the level set method , 2008 .

[39]  Christopher B. Williams,et al.  Multiple-Material Topology Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing , 2014 .

[40]  Matthijs Langelaar,et al.  An additive manufacturing filter for topology optimization of print-ready designs , 2016, Structural and Multidisciplinary Optimization.

[41]  A. Clausen Topology Optimization for Additive Manufacturing , 2016 .

[42]  Daniel A. Tortorelli,et al.  Topology optimization under uncertainty via non-intrusive polynomial chaos expansion , 2017 .

[43]  Wei Chen,et al.  Robust Multi-material Topology Optimization for Lattice Structure Under Material Uncertainties , 2017 .

[44]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[45]  D. Tortorelli,et al.  Gradient based design optimization under uncertainty via stochastic expansion methods , 2016 .

[46]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[47]  Leandro Fleck Fadel Miguel,et al.  A gradient-based polynomial chaos approach for risk and reliability-based design optimization , 2017 .

[48]  Kai A. James,et al.  Multiphase topology design with optimal material selection using an inverse p‐norm function , 2018 .

[49]  Robert Michael Kirby,et al.  Numerical Integration in Multiple Dimensions with Designed Quadrature , 2018, SIAM J. Sci. Comput..