Finite symmetric graphs with two-arc transitive quotients II
暂无分享,去创建一个
[1] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[2] Sanming Zhou. Almost covers of 2-arc transitive graphs , 2007, Comb..
[3] Sanming Zhou,et al. Imprimitive symmetric graphs, 3-arc graphs and 1-designs , 2002, Discret. Math..
[4] Sanming Zhou,et al. Cross Ratio Graphs , 2001 .
[5] C. Praeger. Finite Transitive Permutation Groups and Bipartite Vertex-Transitive Graphs , 2003 .
[6] C. Walker,et al. The Infinitude of 7-Arc-Transitive Graphs☆ , 1998 .
[7] Cheryl E. Praeger,et al. Finite two-are transitive graphs admitting a ree simple group , 1999 .
[8] Peter J. Cameron,et al. On 2-arc transitive graphs of girth 4 , 1983, J. Comb. Theory, Ser. B.
[9] Cheryl E. Praeger,et al. On Finite Affine 2-Arc Transitive Graphs , 1993, Eur. J. Comb..
[10] Sanming Zhou. Classifying a family of symmetric graphs , 2001, Bulletin of the Australian Mathematical Society.
[11] Cai Heng Li. A Family of Quasiprimitive 2-arc Transitive Graphs which Have Non-quasiprimitive Full Automorphism Groups , 1998, Eur. J. Comb..
[12] Dragan Marusic,et al. On 2-arc-transitivity of Cayley graphs , 2003, J. Comb. Theory, Ser. B.
[13] Marston D. E. Conder,et al. Automorphism groups of symmetric graphs of valency 3 , 1989, J. Comb. Theory, Ser. B.
[14] Sanming Zhou. Symmetric Graphs and Flag Graphs , 2003 .
[15] Alexandre A. Ivanov,et al. On 2-Transitive Graphs of Girth 5 , 1987, Eur. J. Comb..
[16] Cheryl E. Praeger,et al. An inequality for tactical configurations , 1996 .
[17] Sanming Zhou. A Local Analysis of Imprimitive Symmetric Graphs , 2005 .
[18] Primoz Potocnik,et al. On 2-arc-transitive Cayley graphs of Abelian groups , 2002, Discret. Math..
[19] Sanming Zhou,et al. Constructing a Class of Symmetric Graphs , 2002, Eur. J. Comb..
[20] C. Praeger. An O'Nan‐Scott Theorem for Finite Quasiprimitive Permutation Groups and an Application to 2‐Arc Transitive Graphs , 1993 .
[21] Cheryl E. Praeger,et al. A geometric approach to imprimitive symmetric graphs , 1995 .
[22] Cheryl E. Praeger,et al. Fintte two-arc transitive graphs admitting a suzuki simple group , 1999 .
[23] Jie Wang,et al. A Family of Non-quasiprimitive Graphs Admitting a Quasiprimitive 2-arc Transitive Group Action , 1999, Eur. J. Comb..
[24] J. Dixon,et al. Permutation Groups , 1996 .
[25] Cheryl E. Praeger,et al. A Geometrical Approach to Imprimitive Graphs , 1995 .
[26] Sanming Zhou,et al. A class of finite symmetric graphs with 2-arc transitive quotients , 2000, Mathematical Proceedings of the Cambridge Philosophical Society.
[27] Hanfried Lenz,et al. Design theory , 1985 .
[28] N. Biggs. Algebraic Graph Theory , 1974 .
[29] Jixiang Meng,et al. A classification of 2-arc-transitive circulant digraphs , 2000, Discret. Math..
[30] Brian Alspach,et al. A Classification of 2-Arc-Transitive Circulants , 1996 .
[31] Gary L. Miller,et al. Regular groups of automorphisms of cubic graphs , 1980, J. Comb. Theory, Ser. B.
[32] C. Lindner,et al. Design Theory, Second Edition , 2008 .
[33] Cheryl E. Praeger,et al. Remarks on Path-transitivity in Finite Graphs , 1996, Eur. J. Comb..
[34] Sanming Zhou,et al. Finite symmetric graphs with two-arc transitive quotients , 2005, J. Comb. Theory, Ser. B.
[35] Richard Weiss,et al. The nonexistence of 8-transitive graphs , 1981, Comb..
[36] P. Cameron. FINITE PERMUTATION GROUPS AND FINITE SIMPLE GROUPS , 1981 .