Ultra-sensitive TEA sensor based on bulk-like Zinc oxide nanostructures

[1]  Yuchi Zhang,et al.  Hierarchical kiwifruit-like ZnO/ZnFe2O4 heterostructure for high-sensitive triethylamine gaseous sensor , 2021 .

[2]  Liming Zhou,et al.  Fast triethylamine gas sensing performance based on In2O3 nanocuboids , 2021, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications.

[3]  Wangwang Liu,et al.  An excellent triethylamine (TEA) sensor based on unique hierarchical MoS2/ZnO composites composed of porous microspheres and nanosheets , 2021 .

[4]  Jiaguo Yu,et al.  Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres , 2021 .

[5]  W. Fan,et al.  Enhanced performance of the tangerines-like CuO-based gas sensor using ZnO nanowire arrays , 2020 .

[6]  H. Nilsson,et al.  Silicon Nanowires for Gas Sensing: A Review , 2020, Nanomaterials.

[7]  Jianliang Cao,et al.  TiO2/ZnCo2O4 porous nanorods: Synthesis and temperature-dependent dual selectivity for sensing HCHO and TEA , 2020 .

[8]  Liang Feng,et al.  Needle-Shaped WO3 Nanorods for Triethylamine Gas Sensing , 2020 .

[9]  Hoo-Jeong Lee,et al.  Flower-shaped ZnO nanomaterials for low-temperature operations in NOX gas sensors , 2020 .

[10]  Jie Gao,et al.  Fabrication of Lettuce-Like ZnO Gas Sensor with Enhanced H2S Gas Sensitivity , 2020, Crystals.

[11]  Yide Han,et al.  Enhanced selective acetone-sensing performance of hierarchical hollow SnO2/α-Fe2O3 microcubes , 2019, Journal of Materials Chemistry C.

[12]  U. Nakate,et al.  Acetaldehyde sensing properties using ultrafine CuO nanoparticles , 2019, Materials Science in Semiconductor Processing.

[13]  R. Adelung,et al.  3D-Printed Chemiresistive Sensor Array on Nanowire CuO/Cu2O/Cu Heterojunction Nets. , 2019, ACS applied materials & interfaces.

[14]  Yan Wang,et al.  Graphitic Carbon Nitride Nanosheets Decorated Flower-like NiO Composites for High-Performance Triethylamine Detection , 2019, ACS omega.

[15]  Ping Liu,et al.  In2O3 nanoplates with different crystallinity and porosity: Controllable synthesis and gas-sensing properties investigation , 2019, Journal of Alloys and Compounds.

[16]  B. Zhang,et al.  Synthesis of porous nanosheets-assembled ZnO/ZnCo2O4 hierarchical structure for TEA detection , 2019, Sensors and Actuators B: Chemical.

[17]  Wooyoung Lee,et al.  Sensing of acetone by Al-doped ZnO , 2019, Sensors and Actuators B: Chemical.

[18]  Ying Chen,et al.  Facile synthesis of ZnO morphological evolution with tunable growth habits: Achieving superior gas-sensing properties of hemispherical ZnO/Au heterostructures for triethylamine , 2019, Physica E: Low-dimensional Systems and Nanostructures.

[19]  Peng Song,et al.  Trimethylamine detection of 3D rGO/mesoporous In2O3 nanocomposites at room temperature , 2019, Applied Surface Science.

[20]  Yujie Dai,et al.  The H2 sensing properties of facets-dependent Pd nanoparticles-supported ZnO nanorods. , 2018, Dalton transactions.

[21]  Zhongbin Luo,et al.  Platinum Nanozyme-Catalyzed Gas Generation for Pressure-Based Bioassay Using Polyaniline Nanowires-Functionalized Graphene Oxide Framework. , 2018, Analytical chemistry.

[22]  G. Lu,et al.  Highly sensitive and selective triethylamine gas sensor based on porous SnO2/Zn2SnO4 composites , 2018, Sensors and Actuators B: Chemical.

[23]  H. Woodrow,et al.  : A Review of the , 2018 .

[24]  Zhenli Qiu,et al.  Cu2+-Doped SnO2 Nanograin/Polypyrrole Nanospheres with Synergic Enhanced Properties for Ultrasensitive Room-Temperature H2S Gas Sensing. , 2017, Analytical chemistry.

[25]  Bingqiang Cao,et al.  Different morphologies of ZnO and their triethylamine sensing properties , 2017 .

[26]  Mukta Tathavadekar,et al.  Photovoltaic and photocatalytic performance of electrospun Zn2SnO4 hollow fibers , 2017 .

[27]  Yahui Li,et al.  Preparation and gas sensing properties of flower-like WO3 hierarchical architecture , 2016 .

[28]  Jun Zhang,et al.  Superior triethylamine-sensing properties based on TiO2/SnO2 n–n heterojunction nanosheets directly grown on ceramic tubes , 2016 .

[29]  Sunghoon Park,et al.  UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature. , 2013, ACS applied materials & interfaces.

[30]  Gyu-Tae Kim,et al.  Synthesis and gas sensing characteristics of highly crystalline ZnO–SnO2 core–shell nanowires , 2010 .

[31]  Seok-Jin Yoon,et al.  The selective detection of C2H5OH using SnO2–ZnO thin film gas sensors prepared by combinatorial solution deposition , 2007 .

[32]  Yan Wang,et al.  Preparation and CO gas-sensing behavior of Au-doped SnO2 sensors , 2006 .

[33]  Xiaohong Wang,et al.  The fabrication and triethylamine sensing performance of In-MIL-68 derived In2O3 with porous lacunaris structure , 2021 .

[34]  Tianye Yang,et al.  Fast triethylamine gas sensing response properties of nanosheets assembled WO3 hollow microspheres , 2019, Applied Surface Science.

[35]  Li Liu,et al.  Porous ZnO microflowers with ultrahigh sensitive and selective properties to ethanol , 2016, Journal of Materials Science: Materials in Electronics.

[36]  Yue Zhang,et al.  Facile synthesis and photoelectrochemical performance of the bush-like ZnO nanosheets film , 2012 .