High-Resolution Macromolecular Structure Determination by MicroED, a cryo-EM Method.

Microelectron diffraction (MicroED) is a new cryo-electron microscopy (cryo-EM) method capable of determining macromolecular structures at atomic resolution from vanishingly small 3D crystals. MicroED promises to solve atomic resolution structures from even the tiniest of crystals, less than a few hundred nanometers thick. MicroED complements frontier advances in crystallography and represents part of the rebirth of cryo-EM that is making macromolecular structure determination more accessible for all. Here we review the concept and practice of MicroED, for both the electron microscopist and crystallographer. Where other reviews have addressed specific details of the technique (Hattne et al., 2015; Shi et al., 2016; Shi, Nannenga, Iadanza, & Gonen, 2013), we aim to provide context and highlight important features that should be considered when performing a MicroED experiment.

[1]  T. Gonen,et al.  Structure of catalase determined by MicroED , 2014, eLife.

[2]  R. Coffee,et al.  Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. , 2015, The Review of scientific instruments.

[3]  N. Grigorieff,et al.  Quantitative characterization of electron detectors for transmission electron microscopy. , 2013, Journal of structural biology.

[4]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[5]  T. Ceska,et al.  High-voltage electron diffraction from bacteriorhodopsin (purple membrane) is measurably dynamical. , 1989, Acta crystallographica. Section A, Foundations of crystallography.

[6]  J. Spence High-Resolution Electron Microscopy , 2003 .

[7]  D A Agard,et al.  Automated microscopy for electron tomography. , 1992, Ultramicroscopy.

[8]  P. Penczek,et al.  A Primer to Single-Particle Cryo-Electron Microscopy , 2015, Cell.

[9]  A. Christensen FROZEN THIN SECTIONS OF FRESH TISSUE FOR ELECTRON MICROSCOPY, WITH A DESCRIPTION OF PANCREAS AND LIVER , 1971, The Journal of cell biology.

[10]  G. Held Low‐Energy Electron Diffraction: Crystallography of Surfaces and Interfaces , 2012 .

[11]  O. L. Krivanek,et al.  Sub-ångstrom resolution using aberration corrected electron optics , 2002, Nature.

[12]  Tamir Gonen,et al.  Aquaporin-0 membrane junctions reveal the structure of a closed water pore , 2004, Nature.

[13]  H. Hauptman,et al.  Direct phase determination for quasi-kinematical electron diffraction intensity data from organic microcrystals. , 1976, Ultramicroscopy.

[14]  Kazushi Kimura,et al.  Implications of the aquaporin-4 structure on array formation and cell adhesion. , 2006, Journal of molecular biology.

[15]  Tamir Gonen,et al.  High-resolution structure determination by continuous rotation data collection in MicroED , 2014, Nature Methods.

[16]  D. J. De Rosier,et al.  Reconstruction of Three Dimensional Structures from Electron Micrographs , 1968, Nature.

[17]  R. Henderson,et al.  Comparison of calculated and observed dynamical diffraction from purple membrane: implications , 1996 .

[18]  R. Henderson,et al.  Three-dimensional model of purple membrane obtained by electron microscopy , 1975, Nature.

[19]  R. Henderson The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules , 1995, Quarterly Reviews of Biophysics.

[20]  Cryo-electron microscopy of biological nanostructures , 2008 .

[21]  Bo Zhang,et al.  Structure of Protein , 2019, Nature.

[22]  Andreas Engel,et al.  The three-dimensional structure of aquaporin-1 , 1997, Nature.

[23]  Walz,et al.  Electron Crystallography of Two-Dimensional Crystals of Membrane Proteins. , 1998, Journal of structural biology.

[24]  C. Davisson,et al.  The Scattering of Electrons by a Single Crystal of Nickel , 1927, Nature.

[25]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[26]  K. Nagayama,et al.  Transmission electron microscopy with Zernike phase plate. , 2001, Ultramicroscopy.

[27]  J. Abrahams,et al.  Unit-cell determination from randomly oriented electron-diffraction patterns , 2009, Acta crystallographica. Section D, Biological crystallography.

[28]  D. DeRosier,et al.  The reconstruction of a three-dimensional structure from projections and its application to electron microscopy , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[29]  Stephan Uhlemann,et al.  A spherical-aberration-corrected 200 kV transmission electron microscope , 1998 .

[30]  Andrew G. W. Leslie,et al.  Processing diffraction data with mosflm , 2007 .

[31]  Jan Pieter Abrahams,et al.  A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals , 2013, Acta crystallographica. Section D, Biological crystallography.

[32]  H. Taub,et al.  An introduction to the dynamical scattering of electrons by crystals , 1970 .

[33]  Tamir Gonen,et al.  MicroED data collection and processing , 2015, Acta crystallographica. Section A, Foundations and advances.

[34]  C. J. Davisson,et al.  Diffraction of Electrons by a Crystal of Nickel , 1927 .

[35]  S. Hovmöller,et al.  Precession electron diffraction: observed and calculated intensities. , 2007, Ultramicroscopy.

[36]  S. Lepper,et al.  Rapid quantification of the effects of blotting for correlation of light and cryo‐light microscopy images , 2010, Journal of microscopy.

[37]  D. Grubb The calibration of beam measurement devices in various electron microscopes, using an efficient Faraday cup. , 1971, Journal of physics E: Scientific instruments.

[38]  T. Gonen,et al.  The collection of MicroED data for macromolecular crystallography , 2016, Nature Protocols.

[39]  K A Taylor,et al.  Electron microscopy of frozen hydrated biological specimens. , 1976, Journal of ultrastructure research.

[40]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005 .

[41]  J. Abrahams,et al.  Imaging protein three-dimensional nanocrystals with cryo-EM. , 2013, Acta crystallographica. Section D, Biological crystallography.

[42]  L. Thomas The diffraction-dependence of electron damage in a high voltage electron microscope , 1970 .

[43]  J. Dubochet,et al.  Cryo-electron microscopy of viruses , 1984, Nature.

[44]  G. Thomson,et al.  Diffraction of Cathode Rays by a Thin Film , 1927, Nature.

[45]  David Eisenberg,et al.  Cross-beta order and diversity in nanocrystals of an amyloid-forming peptide. , 2003, Journal of molecular biology.

[46]  T. Gonen,et al.  Protein structure determination by MicroED. , 2014, Current opinion in structural biology.

[47]  C. W. Cowley CRYOBIOLOGY AS VIEWED BY THE ENGINEER. , 1964, Cryobiology.

[48]  Tamir Gonen,et al.  Three-dimensional electron crystallography of protein microcrystals , 2013, eLife.

[49]  Garth J Simpson,et al.  Screening of protein crystallization trials by second order nonlinear optical imaging of chiral crystals (SONICC). , 2011, Methods.

[50]  Nicholas K. Sauter,et al.  Structure of the toxic core of α-synuclein from invisible crystals , 2015, Nature.

[51]  G. Murphy,et al.  Electron cryotomography sample preparation using the Vitrobot , 2006, Nature Protocols.

[52]  A L Robinson,et al.  Electron Microscope Inventors Share Nobel Physics Prize: Ernst Ruska built the first electron microscope in 1931; Gerd Binnig and Heinrich Rohrer developed the scanning tunneling microscope 50 years later. , 1986, Science.

[53]  T. Gonen,et al.  Modeling truncated pixel values of faint reflections in MicroED images1 , 2016, Journal of applied crystallography.

[54]  I. Robinson,et al.  Reconstruction of the shapes of gold nanocrystals using coherent x-ray diffraction. , 2001, Physical review letters.

[55]  C.B.O. Mohr,et al.  The Multiple Scattering of Electrons and Positrons , 1954 .

[56]  K. Downing,et al.  Structure of PhoE porin in projection at 3.5 A resolution. , 1990, Journal of structural biology.

[57]  Koji Yonekura,et al.  Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges , 2015, Proceedings of the National Academy of Sciences.

[58]  D. Dorset Electron diffraction intensities from bent molecular organic crystals , 1980 .

[59]  N. Tanaka,et al.  Measurement of spatial coherence of electron beams by using a small selected-area aperture. , 2013, Ultramicroscopy.

[60]  T. Gonen The collection of high-resolution electron diffraction data. , 2013, Methods in molecular biology.

[61]  R. Henderson,et al.  Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. , 1990, Journal of molecular biology.

[62]  Yoshinori Fujiyoshi,et al.  Atomic Model of Plant Light‐Harvesting Complex by Electron Crystallography. , 1994 .

[63]  J. Zuo,et al.  Solving protein nanocrystals by cryo-EM diffraction: multiple scattering artifacts. , 2015, Ultramicroscopy.

[64]  J. Zuo,et al.  Coherent nano‐area electron diffraction , 2004, Microscopy research and technique.

[65]  J. Deisenhofer,et al.  Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution , 1985, Nature.

[66]  R. Henkelman,et al.  An energy filter for biological electron microscopy , 1974, Journal of microscopy.

[67]  A G Leslie,et al.  Biological Crystallography Integration of Macromolecular Diffraction Data , 2022 .

[68]  Tamir Gonen,et al.  A suite of software for processing MicroED data of extremely small protein crystals , 2014, Journal of applied crystallography.

[69]  Joachim Frank,et al.  Preparation of macromolecular complexes for cryo-electron microscopy , 2007, Nature Protocols.

[70]  P. Midgley,et al.  Precession electron diffraction – a topical review , 2015, IUCrJ.

[71]  J. M. Cowley,et al.  IMAGE CONTRAST IN A TRANSMISSION SCANNING ELECTRON MICROSCOPE , 1969 .

[72]  Grant J Jensen,et al.  Plunge freezing for electron cryomicroscopy. , 2010, Methods in enzymology.