Determination of the vacancy migration enthalpy in a ternary Fe54Cr16Ni30 alloy, by Monte Carlo simulation of ordering kinetic, using a vacancy diffusion mechanism

[1]  N. Sakaguchi,et al.  Effect of Nickel Concentration on Radiation-Induced Diffusion of Point Defects in High-Nickel Fe–Cr–Ni Model Alloys during Neutron and Electron Irradiation , 2019, MATERIALS TRANSACTIONS.

[2]  A. Ruban,et al.  Atomic configuration and properties of austenitic steels at finite temperature: Effect of longitudinal spin fluctuations , 2016, 1606.05096.

[3]  Manuel Roussel,et al.  Kinetic study of phase transformation in a highly concentrated Fe–Cr alloy: Monte Carlo simulation versus experiments , 2011 .

[4]  P. Dubuisson,et al.  Le gonflement des aciers austénitiques , 2011 .

[5]  Janne Wallenius,et al.  Ab initio study of Cr interactions with point defects in bcc Fe , 2007 .

[6]  Donald J. Siegel,et al.  First-principles study of the solubility, diffusion, and clustering of C in Ni , 2003 .

[7]  Frédéric Soisson,et al.  Kinetic pathways from embedded-atom-method potentials: Influence of the activation barriers , 2002 .

[8]  Frédéric Soisson,et al.  Monte Carlo simulations of copper precipitation in dilute iron-copper alloys during thermal ageing and under electron irradiation , 1996 .

[9]  O. Dimitrov,et al.  Influence of chromium concentration on point defect properties in austenitic Fe-Cr-Ni alloys , 1994 .

[10]  P. Moser,et al.  Electron-irradiation induced defects in an Fe9Cr16Ni75 austenitic alloy , 1990 .

[11]  O. Dimitrov,et al.  Influence of nickel concentration on point defect migration in high-nickel Fe-Cr-Ni alloys , 1988 .

[12]  W. G. Johnston,et al.  An experimental survey of swelling in commercial Fe-Cr-Ni alloys bombarded with 5 MeV Ni Ions , 1974 .

[13]  K. Lücke,et al.  The influence of vacancies on short-range order formation in Au-Ag-alloys , 1972 .

[14]  P. Rossiter,et al.  The electrical resistivity during pre-precipitation processes , 1971 .