The Moore’s Law for photonic integrated circuits

We formulate a “Moore’s law” for photonic integrated circuits (PICs) and their spatial integration density using two methods. One is decomposing the integrated photonics devices of diverse types into equivalent basic elements, which makes a comparison with the generic elements of electronic integrated circuits more meaningful. The other is making a complex component equivalent to a series of basic elements of the same functionality, which is used to calculate the integration density for functional components realized with different structures. The results serve as a benchmark of the evolution of PICs and we can conclude that the density of integration measured in this way roughly increases by a factor of 2 per year. The prospects for a continued increase of spatial integration density are discussed.

[1]  A. Talneau,et al.  10-wavelength 200-GHz channel spacing emitter integrating DBR lasers with a PHASAR on InP for WDM applications , 1999, IEEE Photonics Technology Letters.

[2]  Nicholas C. Andreadakis,et al.  Polarisation-independent monolithic eight-channel 2-nm spacing WDM detector based on compact arrayed waveguide demultiplexer , 1995 .

[3]  Hiroyuki Ishii,et al.  Monolithically integrated WDM channel selectors on InP substrates , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[4]  Y. Hibino,et al.  Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs , 2002 .

[5]  Lars Thylén,et al.  Monolithically integrated 44 InGaAsP/InP laser amplifier gate switch arrays , 1992 .

[6]  C. Dragone,et al.  Demonstration of a 15*15 arrayed waveguide multiplexer on InP , 1992, IEEE Photonics Technology Letters.

[7]  G. Unterborsch,et al.  Ultrafast monolithically integrated InP-based photoreceiver: OEIC-design, fabrication, and system application , 1996 .

[8]  Lech Wosinski,et al.  Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-Si nanowire waveguides , 2006 .

[9]  Lars Thylén,et al.  Strictly nonblocking 8×8 integrated optical switch matrix , 1986 .

[10]  Y Yohan Barbarin,et al.  Extremely small AWG demultiplexer fabricated on InP by using a double-etch Process , 2004 .

[11]  K. Okamoto,et al.  Fabrication of 64*64 arrayed-waveguide grating multiplexer on silicon , 1995 .

[12]  B. Luff,et al.  Planar reflection grating wavelength filters in silicon , 2003 .

[13]  Mk Meint Smit Trends in passive devices for photonic integration , 2005 .

[14]  H. Takahashi,et al.  Wavelength multiplexer based on SiO/sub 2/-Ta/sub 2/O/sub 5/ arrayed-waveguide grating , 1994 .

[15]  Tsutomu Kitoh,et al.  400-channel arrayed-waveguide grating with 25 GHz spacing using 1.5%-Δ waveguides on 6-inch Si wafer , 2001 .

[16]  K. A. McGreer,et al.  Integrated concave grating WDM demultiplexer with 0.144 nm channel spacing , 1997 .

[17]  Toshihiko Baba,et al.  Arrayed waveguide grating of 70×60 µm2 size based on Si photonic wire waveguides , 2005 .

[18]  S. Suzuki,et al.  Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution , 1990 .

[19]  G. Heise,et al.  Grating spectrograph integrated with photodiode array in InGaAsP/InGaAs/InP , 1992, IEEE Photonics Technology Letters.

[20]  Akimasa Kaneko,et al.  Extremely low-loss 1.5%-Δ 32-channel athermal arrayed-waveguide grating multi/demultiplexer , 2005 .

[21]  H. Takahashi,et al.  Fabrication of 128-channel arrayed-waveguide grating multiplexer with 25 GHz channel spacing , 1996 .

[22]  L.G. de Peralta,et al.  Reflective arrayed waveguide grating multiplexer , 2003, IEEE Photonics Technology Letters.

[23]  Yuzo Yoshikuni,et al.  InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to -20 dB crosstalk , 1997 .

[24]  D. Van Thourhout,et al.  Wavelength-selective components in SOI photonic wires fabricated with deep UV lithography , 2004, First IEEE International Conference on Group IV Photonics, 2004..

[25]  H. Ishikawa,et al.  2.5%-/spl Delta/ silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core , 2005, IEEE Photonics Technology Letters.

[26]  Mikitaka Itoh,et al.  Fabrication of low-loss and polarisation-insensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5% /spl Delta/ waveguides , 2000 .

[27]  M. Pearson,et al.  Planar waveguide echelle gratings in silica-on-silicon , 2004, IEEE Photonics Technology Letters.

[28]  Y. Inoue,et al.  Arrayed-waveguide grating multiplexer with loop-back optical paths and its applications , 1996 .

[29]  K. Oda,et al.  Transmission characteristics of arrayed waveguide N/spl times/N wavelength multiplexer , 1995 .

[30]  F. Coppinger,et al.  Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity , 1997, IEEE Photonics Technology Letters.

[31]  C. Dragone,et al.  Broad-band array multiplexers made with silica waveguides on silicon , 1993 .

[32]  Alfred E. Brenner,et al.  Moore's Law , 1997, Science.

[33]  Toshimi Kominato,et al.  Silica-Based Integrated Optic Mach-Zehnder Multi/Demultiplexer Family with Channel Spacing of 0.01-250 nm , 1990, IEEE J. Sel. Areas Commun..

[34]  D. Van Thourhout,et al.  Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography , 2004, IEEE Photonics Technology Letters.

[35]  P. Pagnod-Rossiaux,et al.  Extremely small polarization independent phased-array demultiplexers on InP , 1996, IEEE Photonics Technology Letters.

[36]  H. Bissessur,et al.  Polarisation-independent phased-array demultiplexer on InP with high fabrication tolerance , 1995 .

[37]  Mk Meint Smit,et al.  Four-channel integrated-optic wavelength demultiplexer with weak polarization dependence , 1991 .

[38]  C. Dragone,et al.  Polarisation independent 8*8 waveguide grating multiplexer on InP , 1993 .

[39]  Rajaram Bhat,et al.  Monolithic InP-based grating spectrometer for wavelength-division multiplexed systems at 1•5 μm , 1991 .

[40]  D. Wisely,et al.  32 channel WDM multiplexer with 1 nm channel spacing and 0.7 nm bandwidth , 1991 .

[41]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[42]  M. Kawachi,et al.  Silica-based arrayed-waveguide grating circuit as optical splitter/router , 1995 .

[43]  K. McGreer,et al.  Demultiplexer with 120 channels and 0.29-nm channel spacing , 1998, IEEE Photonics Technology Letters.

[44]  J. H. den Besten,et al.  Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process , 2002, IEEE Photonics Technology Letters.

[45]  M. Itoh,et al.  Low-loss fibre-pigtailed 256 channel arrayed-waveguide grating multiplexer using cascaded laterally-tapered waveguides , 2001 .

[46]  H. Toba,et al.  A four-channel optical waveguide multi/demultiplexer for 5-GHz spaced optical FDM transmission , 1988 .