Activating MoS 2 Basal Plane via Non‐noble Metal Doping For Enhanced Hydrogen Production

[1]  A. Du,et al.  Controllable CO2 electrocatalytic reduction via ferroelectric switching on single atom anchored In2Se3 monolayer , 2021, Nature Communications.

[2]  Yang Peng,et al.  Activating the MoS2 Basal Plane toward Enhanced Solar Hydrogen Generation via in Situ Photoelectrochemical Control , 2020, ACS Energy Letters.

[3]  Ying Dai,et al.  Prediction of intrinsic electrocatalytic activity for hydrogen evolution reaction in Ti4X3 (X = C, N) , 2020 .

[4]  Ru‐Shi Liu,et al.  Phosphorous-doped molybdenum disulfide anchored on silicon as an efficient catalyst for photoelectrochemical hydrogen generation , 2020 .

[5]  M. Hybertsen,et al.  A Physical Model for Understanding the Activation of MoS2 Basal-plane Sulfur Atoms for the Hydrogen Evolution Reaction. , 2020, Angewandte Chemie.

[6]  Guozheng Xiao,et al.  Single‐Atom Iron‐Nitrogen Catalytic Site with Graphitic Nitrogen for Efficient Electroreduction of CO 2 , 2020 .

[7]  Cheng Yang,et al.  Facile Morphology‐Tunable Preparation of CuS@MoS2Heterostructures Based on Template Solvothermal Method , 2020 .

[8]  J. Lou,et al.  Cobalt Modulated Mo-Dinitrogen Interaction in MoS2 for Catalyzing Ammonia Synthesis. , 2019, Journal of the American Chemical Society.

[9]  L. Tapasztó,et al.  Transition Metal Chalcogenide Single Layers as an Active Platform for Single-Atom Catalysis , 2019, ACS energy letters.

[10]  Lei Zhao,et al.  Design of basal plane active MoS2 through one-step nitrogen and phosphorus co-doping as an efficient pH-universal electrocatalyst for hydrogen evolution , 2019, Nano Energy.

[11]  Yu Jia,et al.  Activation of MoS2 Basal Planes for Hydrogen Evolution by Zinc. , 2019, Angewandte Chemie.

[12]  L. Tapasztó,et al.  Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions , 2018, Nature Chemistry.

[13]  Jinlan Wang,et al.  Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution , 2018, Nature Communications.

[14]  Bo Tang,et al.  Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies , 2018, Advanced materials.

[15]  Yun Wang,et al.  Cobalt Covalent Doping in MoS2 to Induce Bifunctionality of Overall Water Splitting , 2018, Advanced materials.

[16]  Nathan C Frey,et al.  Prediction of Enhanced Catalytic Activity for Hydrogen Evolution Reaction in Janus Transition Metal Dichalcogenides. , 2018, Nano letters.

[17]  Peitao Liu,et al.  Active basal plane catalytic activity and conductivity in Zn doped MoS2 nanosheets for efficient hydrogen evolution , 2018 .

[18]  F. Calle‐Vallejo,et al.  Nature of Highly Active Electrocatalytic Sites for the Hydrogen Evolution Reaction at Pt Electrodes in Acidic Media , 2017, ACS omega.

[19]  P. Ajayan,et al.  Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS2 , 2017, Advanced materials.

[20]  X. Xia,et al.  Energy Level Engineering of MoS2 by Transition-Metal Doping for Accelerating Hydrogen Evolution Reaction. , 2017, Journal of the American Chemical Society.

[21]  K. Novoselov,et al.  Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production , 2017, Nature Communications.

[22]  J. Ding,et al.  Activating Basal Planes and S‐Terminated Edges of MoS2 toward More Efficient Hydrogen Evolution , 2017 .

[23]  A. Du,et al.  2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction , 2017 .

[24]  Weitao Yang,et al.  All The Catalytic Active Sites of MoS2 for Hydrogen Evolution. , 2016, Journal of the American Chemical Society.

[25]  M. Pumera,et al.  Negative Electrocatalytic Effects of p-Doping Niobium and Tantalum on MoS2 and WS2 for the Hydrogen Evolution Reaction and Oxygen Reduction Reaction , 2016 .

[26]  Charlie Tsai,et al.  How Doped MoS2 Breaks Transition-Metal Scaling Relations for CO2 Electrochemical Reduction , 2016 .

[27]  Aleksander A. Tedstone,et al.  Synthesis, Properties, and Applications of Transition Metal-Doped Layered Transition Metal Dichalcogenides , 2016 .

[28]  Su-Huai Wei,et al.  High‐Performance Hydrogen Evolution from MoS2(1–x)P x Solid Solution , 2016, Advanced materials.

[29]  S. Lodha,et al.  Few-Layer MoS₂ p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation. , 2016, ACS nano.

[30]  R. Hamers,et al.  Designing Efficient Solar‐Driven Hydrogen Evolution Photocathodes Using Semitransparent MoQxCly (Q = S, Se) Catalysts on Si Micropyramids , 2015, Advanced materials.

[31]  Charlie Tsai,et al.  Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides , 2015 .

[32]  M. Pumera,et al.  Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. , 2015, Chemical reviews.

[33]  Thomas F. Jaramillo,et al.  Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials , 2014 .

[34]  Min-Sang Song,et al.  Unconventional pore and defect generation in molybdenum disulfide: application in high-rate lithium-ion batteries and the hydrogen evolution reaction. , 2014, ChemSusChem.

[35]  Charlie Tsai,et al.  Tuning the MoS₂ edge-site activity for hydrogen evolution via support interactions. , 2014, Nano letters.

[36]  Weitao Yang,et al.  Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. , 2013, Nano letters.

[37]  B. Pan,et al.  Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. , 2013, Journal of the American Chemical Society.

[38]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[39]  J. Nørskov,et al.  The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts , 2012, Science.

[40]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[41]  Seung Min Kim,et al.  Metallic corner atoms in gold clusters supported on rutile are the dominant active site during water-gas shift catalysis. , 2010, Journal of the American Chemical Society.

[42]  Zhi-You Zhou,et al.  Platinum Metal Catalysts of High-Index Surfaces: From Single-Crystal Planes to Electrochemically Shape-Controlled Nanoparticles , 2008 .

[43]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[44]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[45]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[46]  Thomas Bligaard,et al.  Trends in the exchange current for hydrogen evolution , 2005 .

[47]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[48]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .