Anodic formation of thick anatase TiO2 mesosponge layers for high-efficiency photocatalysis.

We report a process for the fabrication of an anatase TiO(2) mesosponge (TMS) layer by an optimized Ti anodization process in a hot glycerol electrolyte followed by a suitable etching process. Such layers can easily be grown to >10 microm thickness and have regular channels and structural features in the 5-20 nm range. The layers show high photocatalytic activity and are mechanically very robust. The layers therefore open new pathways to the wide field of TiO(2)(anatase) applications.

[1]  P. Schmuki,et al.  Formation of a non-thickness-limited titanium dioxide mesosponge and its use in dye-sensitized solar cells. , 2009, Angewandte Chemie.

[2]  N. Ohtsu,et al.  Hydrocarbon decomposition on a hydrophilic TiO2 surface by UV irradiation: spectral and quantitative analysis using in-situ XPS technique. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[3]  Andrei Ghicov,et al.  Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. , 2009, Chemical communications.

[4]  S. Bauer,et al.  Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. , 2009, Journal of the American Chemical Society.

[5]  J. Macák,et al.  Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. , 2009, Angewandte Chemie.

[6]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[7]  A. Walker,et al.  Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. , 2008, Journal of the American Chemical Society.

[8]  J. Macák,et al.  Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes , 2007 .

[9]  Patrik Schmuki,et al.  Self-organized TiO2 nanotube layers as highly efficient photocatalysts. , 2007, Small.

[10]  Kouji Yasuda,et al.  TiO2 nanotubes: Self-organized electrochemical formation, properties and applications , 2007 .

[11]  T. Zubkov,et al.  Ultraviolet light-induced hydrophilicity effect on TiO2(110)(1 x 1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets. , 2005, The journal of physical chemistry. B.

[12]  Akira Fujishima,et al.  Transparent Superhydrophobic Thin Films with Self-Cleaning Properties , 2000 .

[13]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[14]  X. Verykios,et al.  The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes , 1999 .

[15]  A. Fujishima,et al.  Studies of Surface Wettability Conversion on TiO2 Single-Crystal Surfaces , 1999 .

[16]  Jincai Zhao,et al.  TiO2-assisted photodegradation of dye pollutants : II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation , 1998 .

[17]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[18]  G. Whitesides,et al.  Self-Assembled Monolayers of Long-Chain Hydroxamic Acids on the Native Oxides of Metals , 1995 .

[19]  David F. Ollis,et al.  Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack , 1990 .

[20]  N. Sato,et al.  Raman spectra of the anodic oxide film on titanium in acidic sulfate and neutral phosphate solutions , 1986 .

[21]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[22]  J. Macák,et al.  Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles , 2008 .

[23]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[24]  Andrew Mills,et al.  WATER-PURIFICATION BY SEMICONDUCTOR PHOTOCATALYSIS , 1993 .