Interface reaction of U3Si2-UO2 composite pellets during spark plasma sintering

[1]  J. Buckley,et al.  Studies on the spark plasma sintering of U3Si2: Processing parameters and interactions , 2021 .

[2]  J. Lian,et al.  3Y-TZP Toughened and Oxidation-resistant U3Si2 Composites for Accident Tolerant Fuels , 2021 .

[3]  J. Lian,et al.  Cr-doped U3Si2 composite fuels under steam corrosion , 2020 .

[4]  Zhenliang Yang,et al.  Graphite flakes/UO2 fuel pellets with excellent thermal conductivity in radial direction , 2020 .

[5]  Biaojie Yan,et al.  Fabrication of UO2-BeO composite pellets with superior thermal conductivity based on multi-parameter theoretical analyses , 2020 .

[6]  Fangfang Li,et al.  UO2–Mo–Be composites for Accident Tolerant Fuel: SPS fabrication, microcracks-free in as-fabricated state and superior thermal conductivity , 2020 .

[7]  B. Wirth,et al.  Performance of U3Si2 in an LWR following a cladding breach during normal operation , 2020 .

[8]  J. Lian,et al.  U3Si2 and UO2 composites densified by spark plasma sintering for accident-tolerant fuels , 2020, Journal of Nuclear Materials.

[9]  J. Lian,et al.  Spark plasma sintering (SPS) densified U3Si2 pellets: Microstructure control and enhanced mechanical and oxidation properties , 2020, Journal of Alloys and Compounds.

[10]  G. Robles,et al.  High temperature steam oxidation dynamics of U3Si2 with alloying additions: Al, Cr, and Y , 2020 .

[11]  S. Middleburgh,et al.  A high density composite fuel with integrated burnable absorber: U3Si2-UB2 , 2020, Journal of Nuclear Materials.

[12]  J. Turner,et al.  Steam performance of UB2/U3Si2 composite fuel pellets, compared to U3Si2 reference behaviour , 2020, Journal of Nuclear Materials.

[13]  Zhenliang Yang,et al.  SiC whisker strengthened UO2–Mo composite pellets with superior thermal-mechanical properties , 2019 .

[14]  J. Harp,et al.  Postirradiation examinations of low burnup U3Si2 fuel for light water reactor applications , 2019, Journal of Nuclear Materials.

[15]  J. Lian,et al.  In-situ TEM study of the ion irradiation behavior of U3Si2 and U3Si5 , 2018, Journal of Nuclear Materials.

[16]  Pengcheng Zhang,et al.  Ti3SiC2/UO2 composite pellets with superior high-temperature thermal conductivity , 2018, Ceramics International.

[17]  G. Rui,et al.  High temperature thermal physical performance of SiC/UO 2 composites up to 1600 °C , 2018, Ceramics International.

[18]  Y. Kim,et al.  Microstructure investigations of U3Si2 implanted by high-energy Xe ions at 600 °C , 2018 .

[19]  Andrew T. Nelson,et al.  U 3 Si 2 behavior in H 2 O: Part I, flowing steam and the effect of hydrogen , 2018 .

[20]  Andrew T. Nelson,et al.  U 3 Si 2 behavior in H 2 O environments: Part II, pressurized water with controlled redox chemistry , 2018 .

[21]  J. Lian,et al.  Radiation-induced grain subdivision and bubble formation in U3Si2 at LWR temperature , 2018 .

[22]  J. Lian,et al.  Bubble morphology in U3Si2 implanted by high-energy Xe ions at 300 °C , 2017 .

[23]  Lingfeng He,et al.  Microstructure studies of interdiffusion behavior of U 3 Si 2 /Zircaloy-4 at 800 and 1000 °C , 2017 .

[24]  K. Mcclellan,et al.  Thermophysical properties of U3Si2 to 1773K , 2015 .

[25]  Steven J. Zinkle,et al.  Accident tolerant fuels for LWRs: A perspective , 2014 .

[26]  M. Albarhoum The use of U3Si2 dispersed fuel in Low-Power Research Reactors , 2011 .

[27]  A. Berche,et al.  Thermodynamic study of the U―Si system , 2009 .

[28]  J. Snelgrove,et al.  Irradiation behaviour of uranium silicide compounds , 2004 .

[29]  Christine Guéneau,et al.  Thermodynamic assessment of the uranium–oxygen system , 2002 .

[30]  R. C. Birtcher,et al.  Amorphization of U3Si by ion or neutron irradiation , 1997 .

[31]  R. C. Birtcher,et al.  Neutron irradiated uranium silicides studied by neutron diffraction and Rietveld analysis , 1989 .

[32]  S. Nazaré,et al.  Low enrichment dispersion fuels for research and test reactors , 1984 .