Threshold ARCH(1) processes: asymptotic inference
暂无分享,去创建一个
[1] Chanho Lee,et al. Asymptotics of a class of pth-order nonlinear autoregressive processes , 1998 .
[2] R. W. Wedderburn. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .
[3] J. Diebolt,et al. Probabilistic properties of the Béta-ARCH model , 1994 .
[4] H. Kantz,et al. Nonlinear time series analysis , 1997 .
[5] K. Do,et al. Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .
[6] J. Petruccelli,et al. A threshold AR(1) model , 1984, Journal of Applied Probability.
[7] R. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .
[8] I. V. Basawa,et al. Asymptotic optimal inference for a class of nonlinear time series models , 1993 .
[9] Richard L. Tweedie,et al. ON THE EXISTENCE OF STATIONARY THRESHOLD AUTOREGRESSIVE MOVING‐AVERAGE PROCESSES , 1992 .
[10] Paul D. Feigin,et al. RANDOM COEFFICIENT AUTOREGRESSIVE PROCESSES:A MARKOV CHAIN ANALYSIS OF STATIONARITY AND FINITENESS OF MOMENTS , 1985 .
[11] Wolfgang Wefelmeyer,et al. Quasi-likelihood models and optimal inference , 1996 .
[12] P. Bickel. Efficient and Adaptive Estimation for Semiparametric Models , 1993 .
[13] H. An,et al. The geometric ergodicity and existence of moments for a class of non-linear time series model , 1997 .
[14] J. Doob. Stochastic processes , 1953 .
[15] I. Basawa,et al. Large sample inference for conditional exponential families with applications to nonlinear time series , 1994 .
[16] Wai Keung Li,et al. On a Double-Threshold Autoregressive Heteroscedastic Time Series Model , 1996 .
[17] H. An,et al. A note on the ergodicity of non-linear autoregressive model , 1997 .