Threshold ARCH(1) processes: asymptotic inference

This article discusses large sample inference problems for a first-order ARCH(1) process where threshold appears not only in the mean but also in the variance function. Geometric ergodicity of the process is discussed. Least-squares estimators of parameters are derived and relevant limit results are obtained. Also, the uniform local asymptotic normality of the log-likelihood ratio and a class of efficient estimators are briefly discussed. The model is applied to Korean financial time series.

[1]  Chanho Lee,et al.  Asymptotics of a class of pth-order nonlinear autoregressive processes , 1998 .

[2]  R. W. Wedderburn Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .

[3]  J. Diebolt,et al.  Probabilistic properties of the Béta-ARCH model , 1994 .

[4]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[5]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[6]  J. Petruccelli,et al.  A threshold AR(1) model , 1984, Journal of Applied Probability.

[7]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[8]  I. V. Basawa,et al.  Asymptotic optimal inference for a class of nonlinear time series models , 1993 .

[9]  Richard L. Tweedie,et al.  ON THE EXISTENCE OF STATIONARY THRESHOLD AUTOREGRESSIVE MOVING‐AVERAGE PROCESSES , 1992 .

[10]  Paul D. Feigin,et al.  RANDOM COEFFICIENT AUTOREGRESSIVE PROCESSES:A MARKOV CHAIN ANALYSIS OF STATIONARITY AND FINITENESS OF MOMENTS , 1985 .

[11]  Wolfgang Wefelmeyer,et al.  Quasi-likelihood models and optimal inference , 1996 .

[12]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[13]  H. An,et al.  The geometric ergodicity and existence of moments for a class of non-linear time series model , 1997 .

[14]  J. Doob Stochastic processes , 1953 .

[15]  I. Basawa,et al.  Large sample inference for conditional exponential families with applications to nonlinear time series , 1994 .

[16]  Wai Keung Li,et al.  On a Double-Threshold Autoregressive Heteroscedastic Time Series Model , 1996 .

[17]  H. An,et al.  A note on the ergodicity of non-linear autoregressive model , 1997 .