A Framework for Solving VLSI Graph Layout Problems

This paper introduces a new divide-and-conquer framework for VLSI graph layout. Universally close upper and lower bounds are obtained for important cost functions such as layout area and propagation delay. The framework is also effectively used to design regular and configurable layouts, to assemble large networks of processor using restructurable chips, and to configure networks around faulty processors. It is also shown how good graph partitioning heuristics may be used to develop provably good layout strategy.

[1]  J. I. Raffel On the Use of Nonvolatile Programming Links for Restructurable VLSI , 1979 .

[2]  F. Leighton New lower bound techniques for VLSI , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[3]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[4]  Arnold L. Rosenberg,et al.  Three-Dimensional Circuit Layouts , 1984, SIAM J. Comput..

[5]  C. Thomborson,et al.  A Complexity Theory for VLSI , 1980 .

[6]  J. Gilbert Graph separator theorems and sparse Gaussian elimination , 1980 .

[7]  T. N. Bui ON BISECTING RANDOM GRAPHS , 1983 .

[8]  F. Leighton LAYOUT FOR THE SHUFFLE-EXCHANGE GRAPH AND LOWER BOUND TECHNIQUES FOR VLSI , 1982 .

[9]  Lynn Conway,et al.  Introduction to VLSI systems , 1978 .

[10]  Frank Thomson Leighton,et al.  Wafer-scale integration of systolic arrays , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[11]  C. Thomborson,et al.  Area-time complexity for VLSI , 1979, STOC.

[12]  S.,et al.  An Efficient Heuristic Procedure for Partitioning Graphs , 2022 .

[13]  Charles E. Leiserson,et al.  How to assemble tree machines , 1984 .

[14]  Leslie G. Valiant,et al.  Universality considerations in VLSI circuits , 1981, IEEE Transactions on Computers.

[15]  Ronald L. Rivest The "PI" (Placement And Interconnect) System , 1982, DAC 1982.

[16]  S. N. Maheshwari,et al.  Efficient VLSI Networks for Parallel Processing Based on Orthogonal Trees , 1983, IEEE Transactions on Computers.

[17]  Vijaya Ramachandran On Driving Many Long Lines in a VLSI Layout , 1982, FOCS.

[18]  Leon O. Chua,et al.  An efficient heuristic cluster algorithm for tearing large-scale networks , 1977 .

[19]  Jeffrey D Ullma Computational Aspects of VLSI , 1984 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  W. L. Ruzzo,et al.  Minimum Edge Length Planar Embeddings of Trees , 1981 .

[22]  Charles E. Leiserson Systolic Priority Queues , 1979 .

[23]  Richard Edwin Stearns,et al.  Memory bounds for recognition of context-free and context-sensitive languages , 1965, SWCT.

[24]  Zvi Galil,et al.  Explicit constructions of linear size superconcentrators , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[25]  Lawrence Snyder,et al.  Bounds on minimax edge length for complete binary trees , 1981, STOC '81.

[26]  F. Thomas Leighton,et al.  Complexity Issues in VLSI , 1983 .

[27]  Leslie G. Valiant,et al.  On non-linear lower bounds in computational complexity , 1975, STOC.

[28]  Jeffrey D. Ullman,et al.  The Compilation of Regular Expressions into Integrated Circuits (Extended Abstract) , 1980, FOCS.

[29]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[30]  Charles E. Leiserson,et al.  Area-Efficient VLSI Computation , 1983 .

[31]  J. Greene,et al.  Area and Delay Penalties in Restructurable Wafer-Scale Arrays , 1983 .