Metal-Enriched Gaseous Halos around Distant Radio Galaxies: Clues to Feedback in Galaxy Formation

We present the results of an optical and near-IR spectroscopic study of giant nebular emission-line halos associated with three z > 3 radio galaxies, 4C 41.17, 4C 60.07, and B2 0902+34. Previous deep narrowband Lyα imaging revealed complex morphologies with sizes up to 100 kpc, possibly connected to outflows and AGN feedback from the central regions. The outer regions of these halos show quiet kinematics with typical velocity dispersions of a few hundred km s-1 and velocity shears that can mostly be interpreted as being due to rotation. The inner regions show shocked cocoons of gas closely associated with the radio lobes. These display disturbed kinematics and have expansion velocities and/or velocity dispersions >1000 km s-1. The core region is chemically evolved, and we also find spectroscopic evidence for the ejection of enriched material in 4C 41.17 up to a distance of ≈60 kpc along the radio axis. The dynamical structures traced in the Lyα line are, in most cases, closely echoed in the carbon and oxygen lines. This shows that the Lyα line is produced in a highly clumped medium of small filling factor and can therefore be used as a tracer of the dynamics of high-redshift radio galaxies (HzRGs). We conclude that these HzRGs are undergoing a final jet-induced phase of star formation with ejection of most of their interstellar medium before becoming "red and dead" elliptical galaxies.

[1]  R. J. Hanisch,et al.  Astronomical Data Analysis Software and Systems X , 2014 .

[2]  R. Bacon,et al.  The discovery of a galaxy-wide superwind from a young massive galaxy at redshift z ≈ 3 , 2005, Nature.

[3]  C. Baugh,et al.  The metal enrichment of elliptical galaxies in hierarchical galaxy formation models , 2005, astro-ph/0504618.

[4]  M. Rieke,et al.  Discovery of a Large ~200 kpc Gaseous Nebula at z ≈ 2.7 with the Spitzer Space Telescope , 2005, astro-ph/0503632.

[5]  Edinburgh,et al.  An interferometric CO survey of luminous submillimetre galaxies , 2005, astro-ph/0503055.

[6]  A. Omont,et al.  Detection of two massive CO systems in 4C 41.17 at z = 3.8 , 2004, astro-ph/0411732.

[7]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[8]  M. Dopita,et al.  Dusty, Radiation Pressure-Dominated Photoionization. I. Model Description, Structure, and Grids , 2004, astro-ph/0404175.

[9]  H. Rottgering,et al.  HI in the protocluster environment at z > 2: absorbing haloes and the Lyα forest , 2004, astro-ph/0403519.

[10]  Sang-Hyeon Ahn Singly Peaked Asymmetric Lyα from Starburst Galaxies , 2003, astro-ph/0309594.

[11]  W. Percival,et al.  The formation of cluster elliptical galaxies as revealed by extensive star formation , 2003, Nature.

[12]  S. Alighieri,et al.  Kinematically quiet haloes around z ∼ 2.5 radio galaxies. Keck spectroscopy , 2003, astro-ph/0309012.

[13]  K. Aoki,et al.  Infrared Spectroscopy of 15 Radio Galaxies at 2 < z < 2.6 , 2003 .

[14]  M. Lombardi,et al.  Massive Star Formation in a Gravitationally Lensed H II Galaxy at z = 3.357 , 2003, astro-ph/0307162.

[15]  I. Smail,et al.  Extended X-Ray Emission around 4C 41.17 at z = 3.8 , 2003, astro-ph/0306314.

[16]  M. Dopita,et al.  Giant Lyα Nebulae Associated with High-Redshift Radio Galaxies , 2003, astro-ph/0303637.

[17]  Durham,et al.  What Shapes the Luminosity Function of Galaxies? , 2003, astro-ph/0302450.

[18]  R. Braun,et al.  Observations of the high-redshift galaxy B2 0902+343 at 92 cm , 2003, astro-ph/0301418.

[19]  H. Rottgering,et al.  Probing the absorbing haloes around two high-redshift radio galaxies with VLT-UVES , 2002, astro-ph/0209159.

[20]  H. Rottgering,et al.  Deep spectroscopy of z∼ 1 6C radio galaxies - I. The effects of radio power and size on the properties of the emission-line gas , 2002, astro-ph/0208548.

[21]  H. Rottgering,et al.  Deep spectroscopy of z 1 6C radio galaxies - II. Breaking the redshift-radio power degeneracy , 2002, astro-ph/0208549.

[22]  M. Dickinson,et al.  Spatially Resolved High-Ionization Nebulae in a High-Redshift Radio Galaxy: Evidence for Shock Ionization and Photoionization , 2002 .

[23]  H. Spinrad,et al.  A Galactic Wind at z=5.190 , 2002, astro-ph/0201194.

[24]  D. Crampton,et al.  Radio Galaxies at z = 1.1 to 3.8: Adaptive Optics Imaging and Archival Hubble Space Telescope Data , 2001, astro-ph/0112362.

[25]  J. Graham,et al.  Resolved Infrared Spectroscopy of Two High-Redshift Radio Galaxies , 2001 .

[26]  D. Weinberg,et al.  Metal Enrichment of the Intergalactic Medium in Cosmological Simulations , 2001, astro-ph/0105065.

[27]  W. Sargent,et al.  Small-Scale Structure at High Redshift. II. Physical Properties of the C IV Absorbing Clouds , 2001, astro-ph/0104216.

[28]  J. Cuby,et al.  The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics , 2001, astro-ph/0102456.

[29]  A. Cimatti,et al.  Radio galaxies at z 2.5: Results from Keck spectropolarimetry , 2000, astro-ph/0010640.

[30]  J. Miller,et al.  Performance characteristics of the new Keck Observatory echelle spectrograph and imager , 2000, Astronomical Telescopes and Instrumentation.

[31]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[32]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[33]  H. Rottgering,et al.  VLA radio continuum observations of a new sample of high redshift radio galaxies , 2000, astro-ph/0005524.

[34]  Michael C. Liu,et al.  An Excess of Submillimeter Sources near 4C 41.17: A Candidate Protocluster at z = 3.8? , 2000, astro-ph/0005234.

[35]  T. Heckman,et al.  Absorption-Line Probes of Gas and Dust in Galactic Superwinds , 2000, astro-ph/0002526.

[36]  M. Dopita,et al.  Jet-induced Emission-Line Nebulosity and Star Formation in the High-Redshift Radio Galaxy 4C 41.17 , 1999, astro-ph/9909218.

[37]  P. P. van der Werf,et al.  CO (4-3) and Dust Emission in Two Powerful High-z Radio Galaxies, and CO Lines at High Redshifts , 1999, astro-ph/9908286.

[38]  H. Rottgering,et al.  Deep spectroscopy of distant 3CR radio galaxies: the data , 1999, astro-ph/9908210.

[39]  H. Rottgering,et al.  Ionization, shocks and evolution of the emission‐line gas of distant 3CR radio galaxies , 1999, astro-ph/9908211.

[40]  G. Kauffmann,et al.  A unified model for the evolution of galaxies and quasars , 1999, astro-ph/9906493.

[41]  C. Martin Properties of Galactic Outflows: Measurements of the Feedback from Star Formation , 1998, astro-ph/9810233.

[42]  James E. Larkin,et al.  Design and development of NIRSPEC: a near-infrared echelle spectrograph for the Keck II telescope , 1998, Astronomical Telescopes and Instrumentation.

[43]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[44]  M. Dopita,et al.  Ultraviolet Diagnostics for the Emission-Line Gas in Active Galaxies , 1998, astro-ph/9801040.

[45]  M. Dopita,et al.  The LINER Nucleus of M87: A Shock-excited Dissipative Accretion Disk , 1997 .

[46]  M. Dopita,et al.  Unification of the Radio and Optical Properties of Gigahertz Peak Spectrum and Compact Steep-Spectrum Radio Sources , 1997 .

[47]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[48]  W. Vacca,et al.  Triggered Star Formation in a Massive Galaxy at z = 3.8: 4C 41.17 , 1997, astro-ph/9707166.

[49]  H. Rottgering,et al.  Radio Continuum Imaging of High-redshift Radio Galaxies , 1996, astro-ph/9610157.

[50]  K. Chambers,et al.  Ultra{endash}steep-spectrum radio sources. II. Radio, infrared, optical, and {ital HST} imaging of high-redshift 4C objects , 1996 .

[51]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[52]  J. I. Gonzalez-serrano,et al.  Intermediate-resolution spectroscopy of the radio galaxy B2 0902+34 at Z approximately equal 3.4 , 1995, astro-ph/9502072.

[53]  J. Dunlop,et al.  Detection of a large mass of dust in a radio galaxy at redshift z = 3.8 , 1994, Nature.

[54]  C. Carilli,et al.  Radio continuum polarimetric imaging of high redshift radio galaxies , 1994 .

[55]  G. Ferland,et al.  The Chemical Evolution of QSOs and the Implications for Cosmology and Galaxy Formation , 1993 .

[56]  F. Briggs,et al.  Arecibo observation of B2 0902+343 in the 21 centimeter line at redshift 3.4 , 1993 .

[57]  S. M. Fall,et al.  Lyman-Alpha Emission from Galaxies , 1993 .

[58]  S. Rawlings,et al.  Infrared spectroscopy of 11 radio galaxies at Z equals 2-4 - Evidence that some high-redshift radio galaxies may be protogalaxies , 1993 .

[59]  A. Loeb Cosmological Formation of Quasar Black Holes , 1993 .

[60]  M. Dickinson,et al.  How old is the z = 3.4 radio galaxy B2 0902+34? , 1992 .

[61]  Uson,et al.  Radio detections of neutral hydrogen at redshift Z=3.4. , 1991, Physical review letters.

[62]  K. Chambers,et al.  4C 41.17: A Radio Galaxy at a Redshift of 3.8 , 1990 .

[63]  D. Neufeld The transfer of resonance-line radiation in static astrophysical media , 1990 .

[64]  S. Lilly Discovery of a radio galaxy at a redshift of 3.395 , 1988 .

[65]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[66]  M. Lehnert,et al.  The Most Distant Radio Galaxies , 1999 .

[67]  M. Dopita,et al.  Spectral Signatures of Fast Shocks. I. Low-Density Model Grid , 1996 .

[68]  Godfrey L. Smith,et al.  Infrared observations of the Z = 3.8 radio galaxy, 4C 41.17, with the W. M. Keck telescope , 1994 .

[69]  G. A. Croes,et al.  FITS++: An Object-Oriented Set of C++ Classes to Support FITS , 1997 .

[70]  P. McCarthy High redshift radio galaxies , 1993 .