Optimal Operator Space Pursuit: A Framework for Video Sequence Data Analysis

High dimensional data sequences, such as video clips, can be modeled as trajectories in a high dimensional space and, and usually exhibit a low dimensional structure intrinsic to each distinct class of data sequence [1]. In this paper, we exploit a fibre bundle formalism to model various realizations of each trajectory, and characterize these high dimensional data sequences by an optimal operator subspace. Each operator is calculated as a matched filter corresponding to a standard Gaussian output with the data as input. The low dimensional structure intrinsic to the data is further explored, by minimizing the dimension of the operator space under data driven constraints. The dimension minimization problem is reformulated as a convex nuclear norm minimization problem, and an associated algorithm is proposed. Moreover, a fast method with superior performance for video based human activity classification is implemented by searching for an optimal operator space and adapted to the data. Illustrating examples demonstrating the performance of this approach are presented.

[1]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Hamid Krim,et al.  Human Activity Modeling as Brownian Motion on Shape Manifold , 2011, SSVM.

[3]  Eraldo Ribeiro,et al.  Human Motion Recognition Using Isomap and Dynamic Time Warping , 2007, Workshop on Human Motion.

[4]  Rama Chellappa,et al.  Silhouette-based gesture and action recognition via modeling trajectories on Riemannian shape manifolds , 2011, Comput. Vis. Image Underst..

[5]  Bodo Rosenhahn,et al.  Human Motion - Understanding, Modeling, Capture and Animation, Second Workshop, Human Motion 2007, Rio de Janeiro, Brazil, October 20, 2007, Proceedings , 2007, Workshop on Human Motion.

[6]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[7]  B. V. K. Vijaya Kumar,et al.  Cancelable biometric filters for face recognition , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[8]  Ronen Basri,et al.  Actions as Space-Time Shapes , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[10]  Xiao Bian Video-based Human Activity Analysis : An Operator-based Approach , 2012 .

[11]  Knut-Andreas Lie,et al.  Scale Space and Variational Methods in Computer Vision, Second International Conference, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings , 2009, SSVM.

[12]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[13]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.