Identification of potential proteins translated from circular RNA splice variants

[1]  L. Yant,et al.  Circular RNA in disease: Basic properties and biomedical relevance , 2022, Wiley interdisciplinary reviews. RNA.

[2]  Aniruddha Das,et al.  Validation of Circular RNAs by PCR. , 2021, Methods in molecular biology.

[3]  Yifeng Zhou,et al.  A peptide CORO1C-47aa encoded by the circular noncoding RNA circ-0000437 functions as a negative regulator in endometrium tumor angiogenesis , 2021, The Journal of biological chemistry.

[4]  A. Panda,et al.  Emerging Role of Circular RNA–Protein Interactions , 2021, Non-coding RNA.

[5]  Tanvi Sinha,et al.  Circular RNA translation, a path to hidden proteome , 2021, Wiley interdisciplinary reviews. RNA.

[6]  Howard Y. Chang,et al.  Structured elements drive extensive circular RNA translation. , 2021, Molecular cell.

[7]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[8]  Y. Yarden,et al.  CircRNAs: role in human diseases and potential use as biomarkers , 2021, Cell Death & Disease.

[9]  Zhi Xie,et al.  riboCIRC: a comprehensive database of translatable circRNAs , 2021, Genome Biology.

[10]  F. Zhao,et al.  CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes , 2020, Genome Biology.

[11]  G. Storz,et al.  Alternative ORFs and small ORFs: shedding light on the dark proteome. , 2019, Nucleic acids research.

[12]  Amaresh C Panda,et al.  Rolling Circle cDNA Synthesis Uncovers Circular RNA Splice Variants , 2019, International journal of molecular sciences.

[13]  F. Zhao,et al.  Reconstruction of full-length circular RNAs enables isoform-level quantification , 2019, Genome Medicine.

[14]  Zefeng Wang,et al.  Pervasive translation of circular RNAs driven by short IRES-like elements , 2018, Nature Communications.

[15]  Petar Glažar,et al.  A map of human circular RNAs in clinically relevant tissues , 2017, Journal of Molecular Medicine.

[16]  Yang Zhang,et al.  Extensive translation of circular RNAs driven by N6-methyladenosine , 2017, Cell Research.

[17]  Amaresh C Panda,et al.  Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1 , 2017, RNA biology.

[18]  M. Gorospe,et al.  Polysome Fractionation to Analyze mRNA Distribution Profiles. , 2017, Bio-protocol.

[19]  Zhe Liang,et al.  Dot Blot Analysis of N6-methyladenosine RNA Modification Levels. , 2017, Bio-protocol.

[20]  Yan Li,et al.  circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations , 2016, Scientific Reports.

[21]  Jun Wang,et al.  Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes , 2016, Briefings Bioinform..

[22]  O. Rossbach,et al.  CircRNA-protein complexes: IMP3 protein component defines subfamily of circRNPs , 2016, Scientific Reports.

[23]  Jun Zhang,et al.  Diverse alternative back-splicing and alternative splicing landscape of circular RNAs , 2016, Genome research.

[24]  Yi Zheng,et al.  Comprehensive identification of internal structure and alternative splicing events in circular RNAs , 2016, Nature Communications.

[25]  Q. Cui,et al.  SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features , 2016, Nucleic acids research.

[26]  Dawood B. Dudekula,et al.  CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs , 2016, RNA biology.

[27]  G. Brewer,et al.  HuR and Ago2 Bind the Internal Ribosome Entry Site of Enterovirus 71 and Promote Virus Translation and Replication , 2015, PloS one.

[28]  Petar Glažar,et al.  Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. , 2015, Molecular cell.

[29]  T. Rendall,et al.  Coronin-1C and RCC2 guide mesenchymal migration by trafficking Rac1 and controlling GEF exposure , 2014, Journal of Cell Science.

[30]  D. Bartel,et al.  Expanded identification and characterization of mammalian circular RNAs , 2014, Genome Biology.

[31]  Yael Mandel-Gutfreund,et al.  RBPmap: a web server for mapping binding sites of RNA-binding proteins , 2014, Nucleic Acids Res..

[32]  Michael T. McManus,et al.  Pervasive Transcription of the Human Genome Produces Thousands of Previously Unidentified Long Intergenic Noncoding RNAs , 2013, PLoS genetics.

[33]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[34]  Michael K. Slevin,et al.  Circular RNAs are abundant, conserved, and associated with ALU repeats. , 2013, RNA.

[35]  J. Bear,et al.  Coronin 1C harbours a second actin-binding site that confers co-operative binding to F-actin , 2012, The Biochemical journal.

[36]  Charles Gawad,et al.  Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types , 2012, PloS one.

[37]  Jinrong Min,et al.  Structure and function of WD40 domain proteins , 2011, Protein & Cell.

[38]  J. Harrow,et al.  The GENCODE exome: sequencing the complete human exome , 2011, European Journal of Human Genetics.

[39]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[40]  J. Huidobro-Toro,et al.  The Elav-like protein HuR exerts translational control of viral internal ribosome entry sites. , 2009, Virology.

[41]  J. Fauré,et al.  Triadin: what possible function 20 years later? , 2009, The Journal of physiology.

[42]  I. Marty,et al.  Triadin Binding to the C-Terminal Luminal Loop of the Ryanodine Receptor is Important for Skeletal Muscle Excitation–Contraction Coupling , 2007, The Journal of general physiology.

[43]  Rolf Apweiler,et al.  InterProScan: protein domains identifier , 2005, Nucleic Acids Res..

[44]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[45]  Peter Goodfellow,et al.  Circular transcripts of the testis-determining gene Sry in adult mouse testis , 1993, Cell.

[46]  M. Coca-Prados,et al.  Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells , 1979, Nature.

[47]  D. Riesner,et al.  Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A. Panda Circular RNAs Act as miRNA Sponges. , 2018, Advances in experimental medicine and biology.