Red‐shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina

Targeting the photosensitive ion channel channelrhodopsin‐2 (ChR2) to the retinal circuitry downstream of photoreceptors holds promise in treating vision loss caused by retinal degeneration. However, the high intensity of blue light necessary to activate channelrhodopsin‐2 exceeds the safety threshold of retinal illumination because of its strong potential to induce photochemical damage. In contrast, the damage potential of red‐shifted light is vastly lower than that of blue light. Here, we show that a red‐shifted channelrhodopsin (ReaChR), delivered by AAV injections in blind rd1 mice, enables restoration of light responses at the retinal, cortical, and behavioral levels, using orange light at intensities below the safety threshold for the human retina. We further show that postmortem macaque retinae infected with AAV‐ReaChR can respond with spike trains to orange light at safe intensities. Finally, to directly address the question of translatability to human subjects, we demonstrate for the first time, AAV‐ and lentivirus‐mediated optogenetic spike responses in ganglion cells of the postmortem human retina.

[1]  Konrad Lehmann,et al.  Visual Function in Mice with Photoreceptor Degeneration and Transgenic Expression of Channelrhodopsin 2 in Ganglion Cells , 2010, The Journal of Neuroscience.

[2]  William T. Ham,et al.  Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light. , 1978, Investigative ophthalmology & visual science.

[3]  D. Kleinfeld,et al.  ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation , 2013, Nature Neuroscience.

[4]  Soichi Watanabe,et al.  ICNIRP Guidelines on Limits of Exposure to Incoherent Visible and Infrared Radiation. , 2013, Health physics.

[5]  Olaf Strauss,et al.  The retinal pigment epithelium in visual function. , 2005, Physiological reviews.

[6]  Michael H Berry,et al.  Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity , 2015, Molecular therapy : the journal of the American Society of Gene Therapy.

[7]  M. Hascöet,et al.  The mouse light/dark box test. , 2003, European journal of pharmacology.

[8]  W. Hauswirth,et al.  Targeting Photoreceptors via Intravitreal Delivery Using Novel, Capsid-Mutated AAV Vectors , 2013, PloS one.

[9]  the original work is properly cited. , 2022 .

[10]  K. Deisseroth,et al.  Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri , 2008, Nature Neuroscience.

[11]  R. W. Rodieck,et al.  Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvicellular laminae of the lateral geniculate nucleus , 1993, The Journal of comparative neurology.

[12]  R. V. Van Gelder,et al.  Melanopsin Is Highly Resistant to Light and Chemical Bleaching in Vivo* , 2012, The Journal of Biological Chemistry.

[13]  R. W. Rodieck,et al.  Parasol and midget ganglion cells of the human retina , 1985, The Journal of comparative neurology.

[14]  A. Dizhoor,et al.  Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration , 2006, Neuron.

[15]  Jean Bennett,et al.  Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter , 2014, EMBO molecular medicine.

[16]  Patrick Degenaar,et al.  Optobionic vision—a new genetically enhanced light on retinal prosthesis , 2009, Journal of neural engineering.

[17]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[18]  Karl Deisseroth,et al.  Genetic Reactivation of Cone Photoreceptors Restores Visual Responses in Retinitis Pigmentosa , 2010, Science.

[19]  David R Williams,et al.  Intravitreal injection of AAV2 transduces macaque inner retina. , 2011, Investigative ophthalmology & visual science.

[20]  E. Chen Inhibition of cytochrome oxidase and blue-light damage in rat retina , 1993, Graefe's Archive for Clinical and Experimental Ophthalmology.

[21]  L. Landmesser,et al.  New optical tools for controlling neuronal activity , 2007, Current Opinion in Neurobiology.

[22]  B. Jones,et al.  Retinal remodeling in human retinitis pigmentosa. , 2016, Experimental eye research.

[23]  Eriko Sugano,et al.  Restoration of the Majority of the Visual Spectrum by Using Modified Volvox Channelrhodopsin-1 , 2014, Molecular therapy : the journal of the American Society of Gene Therapy.

[24]  David Williams,et al.  Imaging Light Responses of Foveal Ganglion Cells in the Living Macaque Eye , 2014, The Journal of Neuroscience.

[25]  M. Boulton,et al.  Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. , 1995, The Journal of biological chemistry.

[26]  J. B. Demb,et al.  Functional circuitry of visual adaptation in the retina , 2008, The Journal of physiology.

[27]  D. Dacey,et al.  Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Dirk Trauner,et al.  Photochemical Restoration of Visual Responses in Blind Mice , 2012, Neuron.

[29]  E. Chichilnisky,et al.  High-Fidelity Reproduction of Spatiotemporal Visual Signals for Retinal Prosthesis , 2014, Neuron.

[30]  R. Masland,et al.  Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin , 2008, Proceedings of the National Academy of Sciences.

[31]  Deniz Dalkara,et al.  Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[32]  D. Dacey The mosaic of midget ganglion cells in the human retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  David H. Sliney,et al.  The susceptibility of the retina to photochemical damage from visible light , 2012, Progress in Retinal and Eye Research.

[34]  S. Seregard,et al.  Photochemical damage of the retina. , 2006, Survey of ophthalmology.

[35]  E. Chichilnisky,et al.  High-Resolution Electrical Stimulation of Primate Retina for Epiretinal Implant Design , 2008, The Journal of Neuroscience.

[36]  Jessy D. Dorn,et al.  Interim results from the international trial of Second Sight's visual prosthesis. , 2012, Ophthalmology.

[37]  Koji Nakanishi,et al.  Involvement of oxidative mechanisms in blue-light-induced damage to A2E-laden RPE. , 2002, Investigative ophthalmology & visual science.

[38]  Chris E. Williams,et al.  Visual prostheses for the blind. , 2013, Trends in biotechnology.

[39]  B. Roska,et al.  Gene therapy in ophthalmology: validation on cultured retinal cells and explants from postmortem human eyes. , 2011, Human gene therapy.

[40]  J. Simon,et al.  Retinyl palmitate and the blue-light-induced phototoxicity of human ocular lipofuscin. , 2001, Archives of biochemistry and biophysics.

[41]  D H Sliney,et al.  Optical radiation hazards analysis of ultraviolet headlamps. , 1995, Applied optics.

[42]  Siegrid Löwel,et al.  Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool , 2015, PLoS biology.

[43]  Annette E. Allen,et al.  Restoration of Vision with Ectopic Expression of Human Rod Opsin , 2015, Current Biology.

[44]  Douglas S Kim,et al.  Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration , 2008, Nature Neuroscience.

[45]  D. Palanker,et al.  Photovoltaic restoration of sight with high visual acuity , 2015, Nature Medicine.

[46]  J. Mallet,et al.  Retinal cell type expression specificity of HIV‐1‐derived gene transfer vectors upon subretinal injection in the adult rat: influence of pseudotyping and promoter , 2005, The journal of gene medicine.

[47]  Olivier Marre,et al.  Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV Restores ON and OFF visual responses in blind mice. , 2015, Molecular therapy : the journal of the American Society of Gene Therapy.

[48]  Edward S Boyden,et al.  Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[49]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Edward N. Pugh,et al.  Physiological Features of the S- and M-cone Photoreceptors of Wild-type Mice from Single-cell Recordings , 2006, The Journal of general physiology.

[51]  Steven Nusinowitz,et al.  Identification of DES1 as a Vitamin A Isomerase in Müller Glial Cells of the Retina , 2012, Nature chemical biology.

[52]  Eriko Sugano,et al.  Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. , 2010, Experimental eye research.

[53]  K. Nakanishi,et al.  The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. , 2000, Investigative ophthalmology & visual science.

[54]  A. Cideciyan,et al.  Retinal optogenetic therapies: clinical criteria for candidacy , 2013, Clinical genetics.