Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters

[1]  Zhenda Lu,et al.  Superparamagnetic nanocrystal clusters for enrichment of low-abundance peptides and proteins. , 2010, Chemical communications.

[2]  Yadong Yin,et al.  Mesoporous TiO(2) nanocrystal clusters for selective enrichment of phosphopeptides. , 2010, Analytical chemistry.

[3]  Yugang Sun,et al.  Facile Synthesis of Sunlight‐Driven AgCl:Ag Plasmonic Nanophotocatalyst , 2010, Advanced materials.

[4]  Zhong-lin Chen,et al.  Magnetically recoverable core-shell nanocomposites with enhanced photocatalytic activity. , 2010, Chemistry.

[5]  Shuhong Yu,et al.  Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect , 2010 .

[6]  Fan Zuo,et al.  Hard template synthesis of crystalline mesoporous anatase TiO2 for photocatalytic hydrogen evolution , 2010 .

[7]  Wenwan Zhong,et al.  Self-assembled TiO2 nanocrystal clusters for selective enrichment of intact phosphorylated proteins. , 2010, Angewandte Chemie.

[8]  Nam-Gyu Park,et al.  Formation of Highly Efficient Dye‐Sensitized Solar Cells by Hierarchical Pore Generation with Nanoporous TiO2 Spheres , 2009 .

[9]  Xiaobo Chen Titanium Dioxide Nanomaterials and Their Energy Applications , 2009 .

[10]  J. Chovelon,et al.  Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation , 2009 .

[11]  Fuzhi Huang,et al.  Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High‐Performance Dye‐Sensitized Solar Cells , 2009 .

[12]  J. Yi,et al.  Influence of Aspect Ratio of TiO2 Nanorods on the Photocatalytic Decomposition of Formic Acid , 2009 .

[13]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[14]  A. V. Emeline,et al.  Visible-Light-Active Titania Photocatalysts: The Case of N-Doped s—Properties and Some Fundamental Issues , 2008 .

[15]  H. Fu,et al.  Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite‐like Carbon , 2008 .

[16]  Yadong Li,et al.  Ag, Ag2S, and Ag2Se nanocrystals: synthesis, assembly, and construction of mesoporous structures. , 2008, Journal of the American Chemical Society.

[17]  Xun Wang,et al.  A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. , 2007, Angewandte Chemie.

[18]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[19]  Yunfeng Lu,et al.  Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. , 2007, Journal of the American Chemical Society.

[20]  Eric Hu,et al.  Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets , 2006 .

[21]  Fumin Wang,et al.  Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism. , 2004, Journal of the American Chemical Society.

[22]  Fangbai Li,et al.  Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+–TiO2 suspension for odor control , 2004 .

[23]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[24]  M. Anpo,et al.  The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation , 2003 .

[25]  Kimberly A. Gray,et al.  Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR , 2003 .

[26]  K. Koumoto,et al.  Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution , 2003 .

[27]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[28]  Gerald J. Meyer,et al.  Solvatochromic Dye Sensitized Nanocrystalline Solar Cells , 2002 .

[29]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[30]  J. Herrmann,et al.  Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants , 1999 .

[31]  Jane F. Bertone,et al.  Synthesis of TiO2 Nanocrystals by Nonhydrolytic Solution-Based Reactions , 1999 .

[32]  S. Ferrere,et al.  Photosensitization of TiO2 by [FeII(2,2‘-bipyridine-4,4‘-dicarboxylic acid)2(CN)2]: Band Selective Electron Injection from Ultra-Short-Lived Excited States , 1998 .

[33]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .

[34]  J. Banfield,et al.  Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2 , 1997 .

[35]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[36]  J. Bolton,et al.  Photocatalytic Efficiency Variability in TiO2 Particles , 1995 .

[37]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[38]  Wonyong Choi,et al.  The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics , 1994 .

[39]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[40]  M. Prairie,et al.  An investigation of titanium dioxide photocatalysis for the treatment of water contaminated with metals and organic chemicals , 1993 .

[41]  A. Varma,et al.  An in situ diffuse reflectance FTIR investigation of photocatalytic degradation of 4-chlorophenol on a TiO2 powder surface , 1993 .

[42]  André M. Braun,et al.  Photochemical processes for water treatment , 1993 .

[43]  P. Kamat PHOTOCHEMISTRY ON NONREACTIVE AND REACTIVE (SEMICONDUCTOR) SURFACES , 1993 .

[44]  D. Bahnemann,et al.  Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions , 1991 .

[45]  Shinri Sato,et al.  Photocatalytic activity of NOx-doped TiO2 in the visible light region , 1986 .

[46]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[47]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .