The Cover Time of Deterministic Random Walks

The rotor router model is a popular deterministic analogue of a random walk on a graph. Instead of moving to a random neighbor, the neighbors are served in a fixed order. We examine how fast this "deterministic random walk" covers all vertices (or all edges). We present general techniques to derive upper bounds for the vertex and edge cover time and derive matching lower bounds for several important graph classes. Depending on the topology, the deterministic random walk can be asymptotically faster, slower or equally fast compared to the classical random walk.

[1]  Alan M. Frieze,et al.  The cover time of two classes of random graphs , 2005, SODA '05.

[2]  Thomas Sauerwald,et al.  Analyzing Disturbed Diffusion on Networks , 2006, ISAAC.

[3]  Anna Huber,et al.  Quasirandom Rumor Spreading on the Complete Graph Is as Fast as Randomized Rumor Spreading , 2009, SIAM J. Discret. Math..

[4]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 2005, computational complexity.

[5]  D. Aldous On the time taken by random walks on finite groups to visit every state , 1983 .

[6]  L. Asz Random Walks on Graphs: a Survey , 2022 .

[7]  D. Griffeath,et al.  Internal Diffusion Limited Aggregation , 1992 .

[8]  Omer Reingold,et al.  Undirected connectivity in log-space , 2008, JACM.

[9]  Uriel Feige,et al.  A Tight Lower Bound on the Cover Time for Random Walks on Graphs , 1995, Random Struct. Algorithms.

[10]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[11]  O. Schramm,et al.  On the Cover Time of Planar Graphs , 2000, math/0002034.

[12]  Thomas Sauerwald,et al.  The Cover Time of Deterministic Random Walks , 2010 .

[13]  Israel A. Wagner,et al.  Distributed covering by ant-robots using evaporating traces , 1999, IEEE Trans. Robotics Autom..

[14]  Konstantinos Panagiotou,et al.  Tight Bounds for Quasirandom Rumor Spreading , 2009, Electron. J. Comb..

[15]  Uriel Feige,et al.  Short random walks on graphs , 1993, SIAM J. Discret. Math..

[16]  G. Lawler Subdiffusive Fluctuations for Internal Diffusion Limited Aggregation , 1995 .

[17]  Thomas Sauerwald,et al.  Quasirandom rumor spreading , 2008, SODA '08.

[18]  Alan M. Frieze,et al.  The Cover Time of Random Regular Graphs , 2005, SIAM J. Discret. Math..

[19]  Joshua N. Cooper,et al.  Simulating a Random Walk with Constant Error , 2004, Combinatorics, Probability and Computing.

[20]  Y. Peres,et al.  Spherical asymptotics for the rotor-router model in Zd , 2005, math/0503251.

[21]  László Lovász,et al.  Random Walks on Graphs: A Survey , 1993 .

[22]  Y. Peres,et al.  Strong Spherical Asymptotics for Rotor-Router Aggregation and the Divisible Sandpile , 2007, 0704.0688.

[23]  Adrian Kosowski,et al.  Euler Tour Lock-In Problem in the Rotor-Router Model , 2009, DISC.

[24]  Michael Kleber Goldbug variations , 2005 .

[25]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[26]  David Zuckerman On the Time to Traverse all Edges of a Graph , 1991, Inf. Process. Lett..

[27]  Yuval Rabani,et al.  Local divergence of Markov chains and the analysis of iterative load-balancing schemes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[28]  Colin Cooper,et al.  The cover time of sparse random graphs , 2007 .

[29]  Dhar,et al.  Eulerian Walkers as a Model of Self-Organized Criticality. , 1996, Physical review letters.

[30]  Thomas Sauerwald,et al.  Quasirandom load balancing , 2010, SODA '10.

[31]  Chen Avin,et al.  On the Cover Time of Random Geometric Graphs , 2005, ICALP.

[32]  Edward F. Grove,et al.  Simple randomized mergesort on parallel disks , 1996, SPAA '96.

[33]  Peter Winkler,et al.  On Playing Golf with Two Balls , 2003, SIAM J. Discret. Math..

[34]  Chen Avin,et al.  How to Explore a Fast-Changing World (Cover Time of a Simple Random Walk on Evolving Graphs) , 2008, ICALP.

[35]  Anna R. Karlin,et al.  Bounds on the cover time , 1989 .

[36]  Israel A. Wagner,et al.  Smell as a Computational Resource - A Lesson We Can Learn from the Ant , 1996, ISTCS.

[37]  Colin Cooper,et al.  Derandomizing Random Walks in Undirected Graphs Using Locally Fair Exploration Strategies , 2009, ICALP.

[38]  Joshua N. Cooper,et al.  Deterministic random walks on regular trees , 2008, SODA '08.

[39]  José Luis Palacios Expected Hitting and Cover Times of Random Walks on Some Special Graphs , 1994, Random Struct. Algorithms.

[40]  Joshua N. Cooper,et al.  Deterministic random walks on the integers , 2007, Eur. J. Comb..

[41]  Uriel Feige,et al.  Collecting coupons on trees, and the cover time of random walks , 1996, computational complexity.

[42]  David Zukerman On the time to traverse all edges of a graph , 1991 .

[43]  Richard J. Lipton,et al.  Random walks, universal traversal sequences, and the complexity of maze problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[44]  Andrzej Pelc,et al.  Tree exploration with logarithmic memory , 2007, SODA '07.

[45]  Uriel Feige,et al.  Short Random Walks on Graphs , 1996, SIAM J. Discret. Math..

[46]  N. Biggs Algebraic Graph Theory , 1974 .

[47]  A. Wald On Cumulative Sums of Random Variables , 1944 .

[48]  Thomas Sauerwald,et al.  Near-perfect load balancing by randomized rounding , 2009, STOC '09.

[49]  Ronitt Rubinfeld,et al.  The Cover Time of a Regular Expander is O(n log n) , 1990, Information Processing Letters.

[50]  Alan M. Frieze,et al.  The cover time of the giant component of a random graph , 2008, Random Struct. Algorithms.

[51]  Tobias Friedrich,et al.  Deterministic Random Walks on the Two-Dimensional Grid , 2009, Comb. Probab. Comput..

[52]  Richard E. Korf,et al.  Real-Time Heuristic Search , 1990, Artif. Intell..

[53]  David Zuckerman,et al.  A technique for lower bounding the cover time , 1990, STOC '90.

[54]  Thomas Sauerwald,et al.  Quasirandom Rumor Spreading: Expanders, Push vs. Pull, and Robustness , 2009, ICALP.

[55]  Thomas Sauerwald,et al.  Quasirandom rumor spreading: An experimental analysis , 2008, JEAL.

[56]  J. Propp,et al.  Rotor Walks and Markov Chains , 2009, 0904.4507.