Self‐Healing Materials

Self-healing materials are able to partially or completely heal damage inflicted on them, e.g., crack formation; it is anticipated that the original functionality can be restored. This article covers the design and generic principles of self-healing materials through a wide range of different material classes including metals, ceramics, concrete, and polymers. Recent key developments and future challenges in the field of self-healing materials are summarised, and generic, fundamental material-independent principles and mechanism are discussed and evaluated.

[1]  H. Kausch,et al.  Load transfer through chain molecules after interpenetration at interfaces , 1979 .

[2]  J. G. Williams,et al.  Fracture mechanics studies of crack healing and welding of polymers , 1981 .

[3]  Richard P. Wool,et al.  A theory of healing at a polymer-polymer interface , 1983 .

[4]  Sanboh Lee,et al.  Methanol-Induced crack healing in poly(methyl methacrylate)† , 1990 .

[5]  Carolyn M. Dry PASSIVE TUNEABLE FIBERS AND MATRICES , 1992 .

[6]  T. Nishimura,et al.  Crack healing in silicon nitride and alumina ceramics , 1996 .

[7]  E. W. Meijer,et al.  Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. , 1997, Science.

[8]  Wieland Ramm,et al.  Autogenous healing and reinforcement corrosion of water-penetrated separation cracks in reinforced concrete , 1998 .

[9]  N. Sottos,et al.  Autonomic healing of polymer composites , 2001, Nature.

[10]  A. Morton,et al.  Enhanced creep performance in an Al–Cu–Mg–Ag alloy through underageing , 2002 .

[11]  U. Schubert,et al.  Macromolecules containing bipyridine and terpyridine metal complexes: towards metallosupramolecular polymers. , 2002, Angewandte Chemie.

[12]  J. Lehn,et al.  Supramolecular polymers generated from heterocomplementary monomers linked through multiple hydrogen-bonding arrays--formation, characterization, and properties. , 2002, Chemistry.

[13]  Shigemi Sato,et al.  Crack healing behaviour and high-temperature strength of mullite/SiC composite ceramics , 2002 .

[14]  S. Nutt,et al.  A Thermally Re-mendable Cross-Linked Polymeric Material , 2002, Science.

[15]  Shigemi Sato,et al.  Crack-healing behavior of Si3N4/SiC ceramics under stress and fatigue strength at the temperature of healing (1000 °C) , 2002 .

[16]  N. Sottos,et al.  In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene , 2003, Journal of microencapsulation.

[17]  N. Sottos,et al.  In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene , 2003 .

[18]  Ajit K. Mal,et al.  New Thermally Remendable Highly Cross-Linked Polymeric Materials , 2003 .

[19]  U. Schubert,et al.  Supramolecular Branching and Crosslinking of Terpyridine‐Modified Copolymers: Complexation and Decomplexation Studies in Diluted Solution , 2003 .

[20]  A. Morton,et al.  Interrupted aging and secondary precipitation in aluminium alloys , 2003 .

[21]  Ulrich S. Schubert,et al.  New Functional Polymers and Materials Based on 2,2′:6′,2″‐Terpyridine Metal Complexes , 2004 .

[22]  Polymer reaction in polycarbonate with Na2CO3 , 2004 .

[23]  Zhi-xiang Zheng,et al.  Preliminary study of the crack healing and strength recovery of Al2O3-matrix composites , 2004 .

[24]  N. Sottos,et al.  Microcapsule induced toughening in a self-healing polymer composite , 2004 .

[25]  S. White,et al.  Self‐Healing Polymer Coatings , 2009 .

[26]  I. Bond,et al.  'Bleeding composites' - damage detection and self-repair using a biomimetic approach , 2005 .

[27]  I. Bond,et al.  Biomimetic self-healing of advanced composite structures using hollow glass fibres , 2006 .

[28]  Thomas C Ward,et al.  Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers , 2007, Journal of The Royal Society Interface.

[29]  E. W. Meijer,et al.  A selectivity-driven supramolecular polymerization of an AB monomer. , 2006, Angewandte Chemie.

[30]  Koji Takahashi,et al.  Effects of Frequency on the Crack-Healing Behavior of Si3N4/SiC Composite under Cyclic Stress , 2006 .

[31]  Jeffrey S. Moore,et al.  Catalyst morphology and dissolution kinetics of self-healing polymers , 2006 .

[32]  Chia-Yun Hsieh,et al.  Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds , 2006 .

[33]  I. Bond,et al.  Bioinspired self-healing of advanced composite structures using hollow glass fibres , 2007, Journal of The Royal Society Interface.

[34]  Nancy R. Sottos,et al.  Polydimethylsiloxane‐Based Self‐Healing Materials , 2006 .

[35]  U. Schubert,et al.  Metallo‐Supramolecular Block Copolymers , 2007 .

[36]  Ying‐Ling Liu,et al.  Thermally Reversible Cross‐Linked Polyamides with High Toughness and Self‐Repairing Ability from Maleimide‐ and Furan‐Functionalized Aromatic Polyamides , 2007 .

[37]  E. W. Meijer,et al.  Supramolecular Graft Copolymers Based on 2,7-Diamido-1,8-naphthyridines , 2007 .

[38]  Nancy R. Sottos,et al.  Solvent-Promoted Self-Healing Epoxy Materials , 2007 .

[39]  J. Lewis,et al.  Self-healing materials with microvascular networks. , 2007, Nature materials.

[40]  Tao Yin,et al.  Self-healing epoxy composites – Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent , 2007 .

[41]  Peter Greil,et al.  Preceramic Paper‐Derived Ceramics , 2008 .

[42]  Dhirendra Kumar,et al.  Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings , 2008 .

[43]  Fred Wudl,et al.  Synthesis and Characterization of a Single-Component Thermally Remendable Polymer Network: Staudinger and Stille Revisited , 2008 .

[44]  S. Zwaag,et al.  Self-healing of deformation damage in underaged Al-Cu-Mg alloys , 2008 .

[45]  Effect of Difference in Crack-healing Ability on Fatigue Behavior of Alumina/Silicon Carbide Composites , 2008 .

[46]  U. Schubert,et al.  Post-modification of poly(pentafluorostyrene): a versatile "click" method to create well-defined multifunctional graft copolymers. , 2008, Chemical communications.

[47]  Ludwik Leibler,et al.  Synthesis of Self-Healing Supramolecular Rubbers from Fatty Acid Derivatives, Diethylene Triamine, and Urea , 2008 .

[48]  J.Th.M. De Hosson,et al.  Oxidation-induced crack healing in Ti3AlC2 ceramics , 2008 .

[49]  Russell J. Varley,et al.  Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration , 2008 .

[50]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[51]  S. Zwaag,et al.  Peripherally decorated binary microcapsules containing two liquids , 2008 .

[52]  A. Roosen,et al.  Particle Shape and Size Effects on Anisotropic Shrinkage in Tape‐Cast Ceramic Layers , 2008 .

[53]  Nancy R. Sottos,et al.  Microencapsulation of isocyanates for self-healing polymers , 2008 .

[54]  D. Wu,et al.  Self-healing polymeric materials: A review of recent developments , 2008 .

[55]  Nancy R. Sottos,et al.  Bioinspired Materials for Self-Cleaning and Self-Healing , 2008 .

[56]  R. Sijbesma,et al.  A self-healing elastomer. , 2008, Angewandte Chemie.