A numerical algorithm for fully nonlinear HJB equations: An approach by control randomization
暂无分享,去创建一个
[1] Adrien Nguyen Huu,et al. Hedging Expected Losses on Derivatives in Electricity Futures Markets , 2014, 1401.8271.
[2] Daniel Z. Zanger. Quantitative error estimates for a least-squares Monte Carlo algorithm for American option pricing , 2013, Finance Stochastics.
[3] Marco Avellaneda,et al. Reducing variance in the numerical solution of BSDEs , 2013 .
[4] Huyen Pham,et al. Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDE , 2012, 1212.2000.
[5] H. Pham,et al. A probabilistic numerical method for optimal multiple switching problem and application to investments in electricity generation , 2012, 1210.8175.
[6] B. Bouchard,et al. Monte-Carlo valuation of American options: facts and new algorithms to improve existing methods , 2012 .
[7] J. Romo. Pricing Digital Outperformance Options With Uncertain Correlation , 2011 .
[8] Emmanuel Gobet,et al. Approximation of discrete BSDE using least-squares regression , 2011 .
[9] Pierre Henry-Labordere,et al. Uncertain Volatility Model: A Monte-Carlo Approach , 2010 .
[10] Nizar Touzi,et al. A Probabilistic Numerical Method for Fully Nonlinear Parabolic PDEs , 2009, 0905.1863.
[11] E. Gobet,et al. Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations , 2006 .
[12] H. Soner,et al. Second‐order backward stochastic differential equations and fully nonlinear parabolic PDEs , 2005, math/0509295.
[13] John N. Tsitsiklis,et al. Regression methods for pricing complex American-style options , 2001, IEEE Trans. Neural Networks.
[14] Francis A. Longstaff,et al. Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .
[15] X. Zhou,et al. Stochastic Controls: Hamiltonian Systems and HJB Equations , 1999 .
[16] D. Talay. Model Risk in Finance: Some Modeling and Numerical Analysis Issues , 2009 .
[17] M. Mrad. Méthodes numériques d'évaluation et de couverture des options exotiques multi-sous-jacents : modèles de marché et modèles à volatilité incertaine , 2008 .