Modeling the Efficiency of Förster Resonant Energy Transfer from Energy Relay Dyes in Dye- Sensitized Solar Cells References and Links

Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies.

[1]  L. Stryer,et al.  Surface density determination in membranes by fluorescence energy transfer. , 1978, Biochemistry.

[2]  C. Joo,et al.  Advances in single-molecule fluorescence methods for molecular biology. , 2008, Annual review of biochemistry.

[3]  G. Scholes,et al.  Exploring the Förster limit in a small FRET pair , 2008 .

[4]  L. Stryer,et al.  Fluorescence energy transfer in the rapid-diffusion limit. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[6]  M. Fayer,et al.  Excitation transfer in disordered two‐dimensional and anisotropic three‐dimensional systems: Effects of spatial geometry on time‐resolved observables , 1986 .

[7]  W. Eaton,et al.  Protein folding studied by single-molecule FRET. , 2008, Current opinion in structural biology.

[8]  L. Peter,et al.  Dye-sensitized nanocrystalline solar cells. , 2007, Physical chemistry chemical physics : PCCP.

[9]  J. Bünzli,et al.  Taking advantage of luminescent lanthanide ions. , 2005, Chemical Society reviews.

[10]  Massimo Guardigli,et al.  Luminescence of lanthanide cryptates: effects of phosphate and iodide anions , 1992 .

[11]  David Parker,et al.  Luminescent lanthanide sensors for pH, pO2 and selected anions , 2000 .

[12]  Jean M. J. Fréchet,et al.  Increased light harvesting in dye-sensitized solar cells with energy relay dyes , 2009 .

[13]  J. Martinho,et al.  Resonance Energy Transfer in Polymer Nanodomains , 2008 .

[14]  J. Klafter,et al.  Chemical and biological microstructures as probed by dynamic processes. , 1991, Science.

[15]  James R. Durrant,et al.  Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements , 2009 .

[16]  Michael Grätzel,et al.  Pore‐Filling of Spiro‐OMeTAD in Solid‐State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance , 2009 .

[17]  J. Klafter,et al.  Influence of restricted geometries on the direct energy transfer , 1986 .

[18]  Guido Viscardi,et al.  Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. , 2005, Journal of the American Chemical Society.

[19]  Th. Förster,et al.  Experimentelle und theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie , 1949 .

[20]  M. Mac,et al.  Mechanisms of fluorescence quenching of aromatic molecules by potassium iodide and potassium bromide in methanol–ethanol solutions , 1991 .

[21]  E. Katchalski,et al.  Effect of Diffusion on Transfer of Electronic Excitation Energy , 1968 .

[22]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[23]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[24]  I. Z. Steinberg,et al.  Theoretical Analysis of the Role of Diffusion in Chemical Reactions, Fluorescence Quenching, and Nonradiative Energy Transfer , 1968 .

[25]  P. Liska,et al.  Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10 , 2008 .

[26]  Katsiaryna Lutkouskaya,et al.  Mimicking the antenna system of green plants , 2008, Photonics Europe.

[27]  M. Summers,et al.  Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic–Inorganic Hybrid Photovoltaic Cells , 2005 .

[28]  Michael Grätzel,et al.  Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells , 2004 .

[29]  N. S. Sariciftci,et al.  Advanced photon-harvesting concepts for low-energy gap organic solar cells , 2007 .

[30]  Frank Nüesch,et al.  Panchromatic response in solid-state dye-sensitized solar cells containing phosphorescent energy relay dyes. , 2009, Angewandte Chemie.