TimeSeer: Scagnostics for High-Dimensional Time Series

We introduce a method (Scagnostic time series) and an application (TimeSeer) for organizing multivariate time series and for guiding interactive exploration through high-dimensional data. The method is based on nine characterizations of the 2D distributions of orthogonal pairwise projections on a set of points in multidimensional euclidean space. These characterizations include measures, such as, density, skewness, shape, outliers, and texture. Working directly with these Scagnostic measures, we can locate anomalous or interesting subseries for further analysis. Our application is designed to handle the types of doubly multivariate data series that are often found in security, financial, social, and other sectors.

[1]  Jeffrey Heer,et al.  Sizing the horizon: the effects of chart size and layering on the graphical perception of time series visualizations , 2009, CHI.

[2]  Daniel A. Keim,et al.  Pixnostics: Towards Measuring the Value of Visualization , 2006, 2006 IEEE Symposium On Visual Analytics Science And Technology.

[3]  Theresa-Marie Rhyne,et al.  Data Vases: 2D and 3D Plots for Visualizing Multiple Time Series , 2009, ISVC.

[4]  Marc Alexa,et al.  Visualizing time-series on spirals , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[5]  Lijie Fu,et al.  Implementation of Three-dimensional Scagnostics , 2009 .

[6]  Tamara Munzner,et al.  LiveRAC: interactive visual exploration of system management time-series data , 2008, CHI.

[7]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[8]  Fabian Mörchen,et al.  Efficient mining of understandable patterns from multivariate interval time series , 2007, Data Mining and Knowledge Discovery.

[9]  Juan Pedro Caraça-Valente,et al.  Discovering similar patterns in time series , 2000, KDD '00.

[10]  Eamonn J. Keogh,et al.  Probabilistic discovery of time series motifs , 2003, KDD '03.

[11]  Robert Kosara,et al.  Pargnostics: Screen-Space Metrics for Parallel Coordinates , 2010, IEEE Transactions on Visualization and Computer Graphics.

[12]  Matthew D. Cooper,et al.  Depth Cues and Density in Temporal Parallel Coordinates , 2007, EuroVis.

[13]  Robert L. Grossman,et al.  High-Dimensional Visual Analytics: Interactive Exploration Guided by Pairwise Views of Point Distributions , 2006, IEEE Transactions on Visualization and Computer Graphics.

[14]  Martin Wattenberg Baby names, visualization, and social data analysis , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[15]  T. Hastie,et al.  Principal Curves , 2007 .

[16]  Jonathan C. Roberts,et al.  Visual comparison for information visualization , 2011, Inf. Vis..

[17]  J. Hartigan,et al.  The runt test for multimodality , 1992 .

[18]  D. Rosenberg Cartographies of Time: A History of the Timeline , 2010 .

[19]  Kate Beard,et al.  A Framework for Visualization and Exploration of Events , 2008, Inf. Vis..

[20]  Kristian Skrede Gleditsch,et al.  Graphic Discovery: A Trout in the Milk and Other Visual Adventures , 2006 .

[21]  Jessica Lin,et al.  Visually mining and monitoring massive time series , 2004, KDD.

[22]  Issei Fujishiro,et al.  The elements of graphing data , 2005, The Visual Computer.

[23]  Tim Oates,et al.  Identifying distinctive subsequences in multivariate time series by clustering , 1999, KDD '99.

[24]  Judy L. Klein Statistical Visions in Time: A History of Time Series Analysis, 1662-1938 , 1997 .

[25]  Martin Wattenberg,et al.  Stacked Graphs – Geometry & Aesthetics , 2008, IEEE Transactions on Visualization and Computer Graphics.

[26]  Eamonn J. Keogh,et al.  Finding surprising patterns in a time series database in linear time and space , 2002, KDD.

[27]  Ben Shneiderman,et al.  Dynamic Query Tools for Time Series Data Sets: Timebox Widgets for Interactive Exploration , 2004, Inf. Vis..

[28]  J. Gower,et al.  Minimum Spanning Trees and Single Linkage Cluster Analysis , 1969 .

[29]  R. Grossman,et al.  Graph-theoretic scagnostics , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[30]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[31]  James R. Beniger,et al.  Quantitative Graphics in Statistics: A Brief History , 1978 .

[32]  Jarke J. van Wijk,et al.  Cluster and Calendar Based Visualization of Time Series Data , 1999, INFOVIS.

[33]  Charl P. Botha,et al.  Extensions of Parallel Coordinates for Interactive Exploration of Large Multi-Timepoint Data Sets , 2008, IEEE Transactions on Visualization and Computer Graphics.

[34]  Ramana Rao,et al.  The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information , 1994, CHI '94.

[35]  Haim Levkowitz,et al.  Color Theory and Modeling for Computer Graphics, Visualization, and Multimedia Applications , 1997 .

[36]  H. Funkhouser,et al.  Historical Development of the Graphical Representation of Statistical Data. , 1938 .

[37]  Werner Stuetzle,et al.  Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree of a Sample , 2003, J. Classif..

[38]  Robert L. Grossman,et al.  Real Time Change Detection and Alerts from Highway Traffic Data , 2005, ACM/IEEE SC 2005 Conference (SC'05).

[39]  Leland Wilkinson,et al.  Streaming Graphics , 2000 .

[40]  Lucy T. Nowell,et al.  ThemeRiver: visualizing theme changes over time , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[41]  Howard Wainer,et al.  Visual Revelations: Graphical Tales of Fate and Deception from Napoleon Bonaparte to Ross Perot , 1997 .

[42]  Mark D. Apperley,et al.  A review and taxonomy of distortion-oriented presentation techniques , 1994, TCHI.

[43]  James R. Eagan,et al.  Low-level components of analytic activity in information visualization , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[44]  Ben Shneiderman,et al.  A Rank-by-Feature Framework for Interactive Exploration of Multidimensional Data , 2005, Inf. Vis..

[45]  Heidrun Schumann,et al.  Visualizing time-oriented data - A systematic view , 2007, Comput. Graph..

[46]  Daniel B. Carr,et al.  Scatterplot matrix techniques for large N , 1986 .

[47]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .