Refutation-based synthesis in SMT

[1]  Viktor Kuncak,et al.  An Instantiation-Based Approach for Solving Quantified Linear Arithmetic , 2015, ArXiv.

[2]  Ashish Tiwari,et al.  Program Synthesis Using Dual Interpretation , 2015, CADE.

[3]  Pranav Garg,et al.  Alchemist: Learning Guarded Affine Functions , 2015, CAV.

[4]  Viktor Kuncak,et al.  Counterexample-Guided Quantifier Instantiation for Synthesis in SMT , 2015, CAV.

[5]  Viktor Kuncak,et al.  Deductive Program Repair , 2015, CAV.

[6]  Cesare Tinelli,et al.  Finding conflicting instances of quantified formulas in SMT , 2014, 2014 Formal Methods in Computer-Aided Design (FMCAD).

[7]  Leonid Ryzhyk,et al.  User-Guided Device Driver Synthesis , 2014, OSDI.

[8]  Cesare Tinelli,et al.  Introducing StarExec: a Cross-Community Infrastructure for Logic Solving , 2014, COMPARE.

[9]  Viktor Kuncak,et al.  Symbolic Resource Bound Inference for Functional Programs , 2014, CAV.

[10]  Sumit Gulwani,et al.  Test-driven synthesis , 2014, PLDI.

[11]  Mukund Raghothaman,et al.  Language to Specify Syntax-Guided Synthesis Problems , 2014, ArXiv.

[12]  Sagar Chaki,et al.  SMT-based model checking for recursive programs , 2014, Formal Methods in System Design.

[13]  Rajeev Alur,et al.  Synthesizing Finite-State Protocols from Scenarios and Requirements , 2014, Haifa Verification Conference.

[14]  Viktor Kuncak,et al.  Synthesis modulo recursive functions , 2013, OOPSLA.

[15]  Rajeev Alur,et al.  Syntax-guided synthesis , 2013, 2013 Formal Methods in Computer-Aided Design.

[16]  Sumit Gulwani,et al.  Template-based program verification and program synthesis , 2013, International Journal on Software Tools for Technology Transfer.

[17]  Ruzica Piskac,et al.  Functional synthesis for linear arithmetic and sets , 2011, International Journal on Software Tools for Technology Transfer.

[18]  Rajeev Alur,et al.  TRANSIT: specifying protocols with concolic snippets , 2013, PLDI.

[19]  Cesare Tinelli,et al.  Quantifier Instantiation Techniques for Finite Model Finding in SMT , 2013, CADE.

[20]  Clark W. Barrett,et al.  6 Years of SMT-COMP , 2013, Journal of Automated Reasoning.

[21]  Alexander Aiken,et al.  Stochastic superoptimization , 2012, ASPLOS '13.

[22]  Mikolás Janota,et al.  Solving QBF with Counterexample Guided Refinement , 2012, SAT.

[23]  Emil Axelsson,et al.  Combining Deep and Shallow Embedding for EDSL , 2012, Trends in Functional Programming.

[24]  Ruzica Piskac,et al.  Software synthesis procedures , 2012, Commun. ACM.

[25]  Stephan Merz,et al.  Exploiting Symmetry in SMT Problems , 2011, CADE.

[26]  Mikolás Janota,et al.  Abstraction-Based Algorithm for 2QBF , 2011, SAT.

[27]  Youssef Hamadi,et al.  Efficiently solving quantified bit-vector formulas , 2010, Formal Methods in Computer Aided Design.

[28]  Nikolaj Bjørner,et al.  Linear Quantifier Elimination as an Abstract Decision Procedure , 2010, IJCAR.

[29]  David Monniaux,et al.  Quantifier Elimination by Lazy Model Enumeration , 2010, CAV.

[30]  Ruzica Piskac,et al.  Complete functional synthesis , 2010, PLDI '10.

[31]  Sumit Gulwani,et al.  Oracle-guided component-based program synthesis , 2010, 2010 ACM/IEEE 32nd International Conference on Software Engineering.

[32]  Leonardo Mendonça de Moura,et al.  Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories , 2009, CAV.

[33]  S. Schewe,et al.  Bounded synthesis , 2007, International Journal on Software Tools for Technology Transfer.

[34]  Cesare Tinelli,et al.  Solving quantified verification conditions using satisfiability modulo theories , 2007, Annals of Mathematics and Artificial Intelligence.

[35]  Nikolaj Bjørner,et al.  Efficient E-Matching for SMT Solvers , 2007, CADE.

[36]  Cesare Tinelli,et al.  An Abstract Decision Procedure for Satisfiability in the Theory of Recursive Data Types , 2007, PDPAR/PaUL@FLoC.

[37]  Cesare Tinelli,et al.  Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) , 2006, JACM.

[38]  Sanjit A. Seshia,et al.  Combinatorial sketching for finite programs , 2006, ASPLOS XII.

[39]  Amir Pnueli,et al.  Synthesis of Reactive(1) designs , 2006, J. Comput. Syst. Sci..

[40]  David Detlefs,et al.  Simplify: a theorem prover for program checking , 2005, JACM.

[41]  Patrick Cousot,et al.  Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming , 2005, VMCAI.

[42]  Tobias Nipkow,et al.  Certifying Machine Code Safety: Shallow Versus Deep Embedding , 2004, TPHOLs.

[43]  Igor L. Markov,et al.  Solving difficult SAT instances in the presence of symmetry , 2002, Proceedings 2002 Design Automation Conference (IEEE Cat. No.02CH37324).

[44]  Amir Pnueli,et al.  On the synthesis of a reactive module , 1989, POPL '89.

[45]  Rance Cleaveland,et al.  Implementing mathematics with the Nuprl proof development system , 1986 .

[46]  Zohar Manna,et al.  A Deductive Approach to Program Synthesis , 1979, TOPL.

[47]  C. Cordell Green,et al.  Application of Theorem Proving to Problem Solving , 1969, IJCAI.

[48]  Solving Exists/Forall Problems With Yices , 2015 .

[49]  Armando Solar-Lezama Program sketching , 2012, International Journal on Software Tools for Technology Transfer.

[50]  David G. Mitchell,et al.  Theory and Applications of Satisfiability Testing , 2008 .

[51]  J. van Leeuwen,et al.  Verification, Model Checking, and Abstract Interpretation , 2002, Lecture Notes in Computer Science.