Higgs boson pair production via gluon fusion at N3LO in QCD

We present next-to-next-to-next-to-leading order (N$^3$LO) QCD predictions for the Higgs boson pair production via gluon fusion at hadron colliders in the infinite top-quark mass limit. Besides the inclusive total cross sections at various collision energies, we also provide the invariant mass distribution of the Higgs boson pair. Our results show that the N$^3$LO QCD corrections enhance the next-to-next-to-leading order cross section by $3.0\%$ ($2.7\%$) at $\sqrt{s}=13~(100)$ TeV, while the scale uncertainty is reduced substantially below $3\%$ ($2\%$). We also find that a judicious scale choice can significantly improve the perturbative convergence. For the invariant mass distribution, our calculation demonstrates that the N$^3$LO corrections obviously improve the scale dependence but almost do not change the shape.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  M. Mühlleitner,et al.  Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme , 2018, The European Physical Journal C.

[3]  R. Frederix,et al.  Higgs pair production at the LHC with NLO and parton-shower effects , 2014, 1401.7340.

[4]  Ansgar Denner,et al.  Collier: A fortran-based complex one-loop library in extended regularizations , 2016, Comput. Phys. Commun..

[5]  T. Hansl-Kozanecka,et al.  Commissioning of the ATLAS Muon Spectrometer with Cosmic Rays , 2010, 1006.4384.

[6]  C. Bauer,et al.  Invariant operators in collinear effective theory , 2001, hep-ph/0107001.

[7]  A. Banerjee,et al.  On the rotating and oscillating strings in (AdS3 × S3)ϰ , 2014, 1406.3642.

[8]  P. Catastini,et al.  Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at √s = 7 and 8 TeV in the ATLAS experiment , 2015, 1507.04548.

[9]  C. Bauer,et al.  Soft collinear factorization in effective field theory , 2001, hep-ph/0109045.

[10]  Ramona Gröber,et al.  Analytical Method for Next-to-Leading-Order QCD Corrections to Double-Higgs Production. , 2018, Physical review letters.

[11]  Jian Wang,et al.  Fully differential Higgs pair production in association with a W boson at next-to-next-to-leading order in QCD , 2016, 1607.06382.

[12]  Claude Duhr,et al.  FeynRules 2.0 - A complete toolbox for tree-level phenomenology , 2013, Comput. Phys. Commun..

[13]  Riccardo Rattazzi,et al.  Patterns of strong coupling for LHC searches , 2016, Journal of High Energy Physics.

[14]  F. Dreyer,et al.  Vector-boson fusion Higgs pair production at N3LO , 2018, Physical Review D.

[15]  Alan D. Martin,et al.  Parton distributions in the LHC era: MMHT 2014 PDFs , 2014, The European physical journal. C, Particles and fields.

[16]  S. Borowka,et al.  Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence. , 2016, Physical review letters.

[17]  S. Frixione A general approach to jet cross sections in QCD , 1997, hep-ph/9706545.

[18]  Z. Kunszt,et al.  Three-jet cross sections to next-to-leading order , 1995, hep-ph/9512328.

[19]  M. Beneke,et al.  Soft-collinear effective theory and heavy-to-light currents beyond leading power , 2002, hep-ph/0206152.

[20]  Falko Dulat,et al.  iHixs 2 - Inclusive Higgs cross sections , 2018, Comput. Phys. Commun..

[21]  T. Plehn,et al.  PAIR PRODUCTION OF NEUTRAL HIGGS PARTICLES IN GLUON-GLUON COLLISIONS , 1996 .

[22]  Bruce Yabsley,et al.  Fluctuations of anisotropic flow in Pb+Pb collisions at $ \sqrt{{\mathrm{s}}_{\mathrm{NN}}} $ = 5.02 TeV with the ATLAS detector , 2019 .

[23]  F. Dulat,et al.  Precision predictions at N3LO for the Higgs boson rapidity distribution at the LHC , 2018, Physical Review D.

[24]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[25]  C. Anastasiou,et al.  Higgs boson gluon-fusion production in QCD at three loops. , 2015, Physical review letters.

[26]  Josef Dick On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..

[27]  Paul Koerber,et al.  The non-abelian Born-Infeld action through order $\alpha'{}^3$ , 2001 .

[28]  Matthias Steinhauser,et al.  Hadronic Higgs Boson Decay to Order as4 , 1997 .

[29]  Myeonghun Park,et al.  Probing the Triple Higgs Self-Interaction at the Large Hadron Collider. , 2018, Physical review letters.

[30]  Frank Ferrari Large N and double scaling limits in two dimensions , 2002 .

[31]  Matthias Steinhauser,et al.  Higgs boson pair production: top quark mass effects at NLO and NNLO , 2015, 1508.00909.

[32]  C. Sturm,et al.  QCD decoupling at four loops , 2005, hep-ph/0512060.

[33]  S. Lloyd,et al.  LHAPDF6: parton density access in the LHC precision era , 2014, The European Physical Journal C.

[34]  F. Dreyer,et al.  Vector-Boson Fusion Higgs Production at Three Loops in QCD. , 2016, Physical review letters.

[35]  T. Hahn,et al.  Generating Feynman Diagrams and Amplitudes with FeynArts 3 , 2001 .

[36]  Q. Yan,et al.  Efficient numerical evaluation of Feynman integrals , 2015, 1508.02512.

[37]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[38]  C. Bauer,et al.  Summing Sudakov logarithms in B ---> X(s gamma) in effective field theory , 2000, hep-ph/0005275.

[39]  D. Rathlev,et al.  Differential Higgs boson pair production at next-to-next-to-leading order in QCD , 2013, Physical review letters.

[40]  C. Bauer,et al.  An Effective field theory for collinear and soft gluons: Heavy to light decays , 2000, hep-ph/0011336.

[41]  Yasuhiro Okada,et al.  Effective gauge theory and the effect of heavy quarks in Higgs boson decays , 1983 .

[42]  J. Huston,et al.  PDF4LHC recommendations for LHC Run II , 2015, 1510.03865.

[43]  Li Lin Yang,et al.  Transverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark case. , 2012, Physical review letters.

[44]  Massimiliano Grazzini,et al.  Next-to-next-to-leading-order subtraction formalism in hadron collisions and its application to Higgs-boson production at the large hadron collider. , 2007, Physical review letters.

[45]  D. Neill,et al.  Rapidity renormalization group. , 2011, Physical review letters.

[46]  V. M. Ghete,et al.  Combination of Searches for Higgs Boson Pair Production in Proton-Proton Collisions at sqrt[s]=13  TeV. , 2018, Physical review letters.

[47]  Ramona Gröber,et al.  On the two-loop virtual QCD corrections to Higgs boson pair production in the standard model , 2016, 1603.00385.

[48]  K. Chetyrkin,et al.  Five-Loop Running of the QCD Coupling Constant. , 2016, Physical review letters.

[49]  V. M. Ghete,et al.  Combined measurements of Higgs boson couplings in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{doc , 2018, The European Physical Journal. C, Particles and Fields.

[50]  G. Polesello,et al.  Searching for heavy Higgs bosons in the tt¯Z$$ t\overline{t}Z $$ and tbW final states , 2018, Journal of High Energy Physics.

[51]  G. Bell,et al.  Analytic regularization in Soft-Collinear Effective Theory , 2011, 1112.3907.

[52]  Matthias Steinhauser,et al.  On the Higgs boson pair production at the LHC , 2013, 1305.7340.

[53]  Michael Spira,et al.  Neutral Higgs-Boson Pair Production at Hadron Colliders: QCD Corrections , 1998 .

[54]  D. Florian,et al.  Two-loop virtual corrections to Higgs pair production , 2013, 1305.5206.

[55]  A. V. Smirnov,et al.  FIRE5: A C++ implementation of Feynman Integral REduction , 2014, Comput. Phys. Commun..

[56]  B. Kniehl,et al.  Decoupling relations to O(a s 3) and their connection to low-energy theorems , 1998 .

[57]  K. Melnikov,et al.  Virtual corrections to Higgs boson pair production in the large top quark mass limit , 2014, 1408.2422.

[58]  Deshun Li On Chinese Culture , 2015 .

[59]  J. Huston,et al.  New parton distribution functions from a global analysis of quantum chromodynamics , 2015, 1506.07443.