Robust Preconditioners for a New Stabilized Discretization of the Poroelastic Equations
暂无分享,去创建一个
Ludmil T. Zikatanov | Xiaozhe Hu | Carmen Rodrigo | Francisco J. Gaspar | James H. Adler | Peter Ohm | L. Zikatanov | C. Rodrigo | F. Gaspar | P. Ohm | Xiaozhe Hu | J. Adler
[1] M. Biot. General Theory of Three‐Dimensional Consolidation , 1941 .
[2] H. Elman. Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .
[3] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[4] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[5] Timothy A. Davis,et al. An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .
[6] Abimael F. D. Loula,et al. Improved accuracy in finite element analysis of Biot's consolidation problem , 1992 .
[7] Abimael F. D. Loula,et al. On stability and convergence of finite element approximations of biot's consolidation problem , 1994 .
[8] A. Cheng,et al. Mandel's problem revisited , 1996 .
[9] Vidar Thomée,et al. Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem , 1996 .
[10] G. Starke. Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems , 1997 .
[11] Axel Klawonn,et al. Block triangular preconditioners for nonsymmetric saddle point problems: field-of-values analysis , 1999, Numerische Mathematik.
[12] Timothy A. Davis,et al. A combined unifrontal/multifrontal method for unsymmetric sparse matrices , 1999, TOMS.
[13] Herbert F. Wang. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology , 2000 .
[14] Douglas N. Arnold,et al. Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.
[15] Cornelis W. Oosterlee,et al. A systematic comparison of coupled and distributive smoothing in multigrid for the poroelasticity system , 2004, Numer. Linear Algebra Appl..
[16] Timothy A. Davis,et al. Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.
[17] Andrew J. Wathen,et al. Analysis of Preconditioners for Saddle-Point Problems , 2004, SIAM J. Sci. Comput..
[18] Timothy A. Davis,et al. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method , 2004, TOMS.
[19] John N. Shadid,et al. Block Preconditioners Based on Approximate Commutators , 2005, SIAM J. Sci. Comput..
[20] J. Humphrey,et al. Interstitial transport and transvascular fluid exchange during infusion into brain and tumor tissue. , 2007, Microvascular research.
[21] Jinchao Xu,et al. Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..
[22] Jose L. Gracia,et al. Distributive smoothers in multigrid for problems with dominating grad–div operators , 2008, Numer. Linear Algebra Appl..
[23] John N. Shadid,et al. A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations , 2008, J. Comput. Phys..
[24] Luca Bergamaschi,et al. Performance and robustness of block constraint preconditioners in finite element coupled consolidation problems , 2009 .
[25] Kent-André Mardal,et al. Preconditioning discretizations of systems of partial differential equations , 2011, Numer. Linear Algebra Appl..
[26] Panayot S. Vassilevski,et al. Parallel Auxiliary Space AMG Solver for H(div) Problems , 2012, SIAM J. Sci. Comput..
[27] Fafa Ben-Hatira,et al. A finite element modeling of the human lumbar unit including the spinal cord , 2012 .
[28] Andro Mikelić,et al. Convergence of iterative coupling for coupled flow and geomechanics , 2013, Computational Geosciences.
[29] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[30] Joshua A. White,et al. Accuracy and convergence properties of the fixed‐stress iterative solution of two‐way coupled poromechanics , 2015 .
[31] F. Radu,et al. Space–time finite element approximation of the Biot poroelasticity system with iterative coupling , 2016, 1611.06335.
[32] V. Haughton,et al. Poro-elastic modeling of Syringomyelia – a systematic study of the effects of pia mater, central canal, median fissure, white and gray matter on pressure wave propagation and fluid movement within the cervical spinal cord , 2016, Computer methods in biomechanics and biomedical engineering.
[33] Ludmil T. Zikatanov,et al. Stability and monotonicity for some discretizations of the Biot’s consolidation model , 2016 .
[34] Nicola Castelletto,et al. Scalable algorithms for three-field mixed finite element coupled poromechanics , 2016, J. Comput. Phys..
[35] Jinchao Xu,et al. Robust preconditioners for incompressible MHD models , 2015, J. Comput. Phys..
[36] Ludmil T. Zikatanov,et al. Preconditioning Heterogeneous H(div) Problems by Additive Schur Complement Approximation and Applications , 2016, SIAM J. Sci. Comput..
[37] Jeonghun J. Lee,et al. Robust Error Analysis of Coupled Mixed Methods for Biot’s Consolidation Model , 2015, J. Sci. Comput..
[38] Joshua A. White,et al. Block-partitioned solvers for coupled poromechanics: A unified framework , 2016 .
[39] Mary F. Wheeler,et al. Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics , 2016 .
[40] Cornelis W. Oosterlee,et al. On an Uzawa smoother in multigrid for poroelasticity equations , 2017, Numer. Linear Algebra Appl..
[41] Ludmil T. Zikatanov,et al. A nonconforming finite element method for the Biot's consolidation model in poroelasticity , 2016, J. Comput. Appl. Math..
[42] Jan M. Nordbotten,et al. Robust fixed stress splitting for Biot's equations in heterogeneous media , 2017, Appl. Math. Lett..
[43] Carmen Rodrigo,et al. On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics , 2017 .
[44] L. Zikatanov,et al. Robust Block Preconditioners for Biot's Model , 2017, CSE 2017.
[45] Jeonghun J. Lee,et al. Parameter-Robust Discretization and Preconditioning of Biot's Consolidation Model , 2015, SIAM J. Sci. Comput..
[46] J. Kraus,et al. Parameter-robust stability of classical three-field formulation of Biot's consolidation model , 2017, 1706.00724.
[47] L. Zikatanov,et al. New stabilized discretizations for poroelasticity and the Stokes’ equations , 2017, Computer Methods in Applied Mechanics and Engineering.
[48] Carmen Rodrigo,et al. A partially parallel-in-time fixed-stress splitting method for Biot's consolidation model , 2019, Comput. Math. Appl..
[49] Johannes Kraus,et al. Conservative discretizations and parameter‐robust preconditioners for Biot and multiple‐network flux‐based poroelasticity models , 2018, Numer. Linear Algebra Appl..
[50] Tsuyoshi Murata,et al. {m , 1934, ACML.