Robust Preconditioners for a New Stabilized Discretization of the Poroelastic Equations

In this paper, we present block preconditioners for a stabilized discretization of the poroelastic equations developed in [45]. The discretization is proved to be well-posed with respect to the physical and discretization parameters, and thus provides a framework to develop preconditioners that are robust with respect to such parameters as well. We construct both norm-equivalent (diagonal) and field-of-value-equivalent (triangular) preconditioners for both the stabilized discretization and a perturbation of the stabilized discretization that leads to a smaller overall problem after static condensation. Numerical tests for both two- and three-dimensional problems confirm the robustness of the block preconditioners with respect to the physical and discretization parameters.

[1]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[2]  H. Elman Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .

[3]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[4]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[5]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[6]  Abimael F. D. Loula,et al.  Improved accuracy in finite element analysis of Biot's consolidation problem , 1992 .

[7]  Abimael F. D. Loula,et al.  On stability and convergence of finite element approximations of biot's consolidation problem , 1994 .

[8]  A. Cheng,et al.  Mandel's problem revisited , 1996 .

[9]  Vidar Thomée,et al.  Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem , 1996 .

[10]  G. Starke Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems , 1997 .

[11]  Axel Klawonn,et al.  Block triangular preconditioners for nonsymmetric saddle point problems: field-of-values analysis , 1999, Numerische Mathematik.

[12]  Timothy A. Davis,et al.  A combined unifrontal/multifrontal method for unsymmetric sparse matrices , 1999, TOMS.

[13]  Herbert F. Wang Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology , 2000 .

[14]  Douglas N. Arnold,et al.  Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.

[15]  Cornelis W. Oosterlee,et al.  A systematic comparison of coupled and distributive smoothing in multigrid for the poroelasticity system , 2004, Numer. Linear Algebra Appl..

[16]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[17]  Andrew J. Wathen,et al.  Analysis of Preconditioners for Saddle-Point Problems , 2004, SIAM J. Sci. Comput..

[18]  Timothy A. Davis,et al.  A column pre-ordering strategy for the unsymmetric-pattern multifrontal method , 2004, TOMS.

[19]  John N. Shadid,et al.  Block Preconditioners Based on Approximate Commutators , 2005, SIAM J. Sci. Comput..

[20]  J. Humphrey,et al.  Interstitial transport and transvascular fluid exchange during infusion into brain and tumor tissue. , 2007, Microvascular research.

[21]  Jinchao Xu,et al.  Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..

[22]  Jose L. Gracia,et al.  Distributive smoothers in multigrid for problems with dominating grad–div operators , 2008, Numer. Linear Algebra Appl..

[23]  John N. Shadid,et al.  A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations , 2008, J. Comput. Phys..

[24]  Luca Bergamaschi,et al.  Performance and robustness of block constraint preconditioners in finite element coupled consolidation problems , 2009 .

[25]  Kent-André Mardal,et al.  Preconditioning discretizations of systems of partial differential equations , 2011, Numer. Linear Algebra Appl..

[26]  Panayot S. Vassilevski,et al.  Parallel Auxiliary Space AMG Solver for H(div) Problems , 2012, SIAM J. Sci. Comput..

[27]  Fafa Ben-Hatira,et al.  A finite element modeling of the human lumbar unit including the spinal cord , 2012 .

[28]  Andro Mikelić,et al.  Convergence of iterative coupling for coupled flow and geomechanics , 2013, Computational Geosciences.

[29]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[30]  Joshua A. White,et al.  Accuracy and convergence properties of the fixed‐stress iterative solution of two‐way coupled poromechanics , 2015 .

[31]  F. Radu,et al.  Space–time finite element approximation of the Biot poroelasticity system with iterative coupling , 2016, 1611.06335.

[32]  V. Haughton,et al.  Poro-elastic modeling of Syringomyelia – a systematic study of the effects of pia mater, central canal, median fissure, white and gray matter on pressure wave propagation and fluid movement within the cervical spinal cord , 2016, Computer methods in biomechanics and biomedical engineering.

[33]  Ludmil T. Zikatanov,et al.  Stability and monotonicity for some discretizations of the Biot’s consolidation model , 2016 .

[34]  Nicola Castelletto,et al.  Scalable algorithms for three-field mixed finite element coupled poromechanics , 2016, J. Comput. Phys..

[35]  Jinchao Xu,et al.  Robust preconditioners for incompressible MHD models , 2015, J. Comput. Phys..

[36]  Ludmil T. Zikatanov,et al.  Preconditioning Heterogeneous H(div) Problems by Additive Schur Complement Approximation and Applications , 2016, SIAM J. Sci. Comput..

[37]  Jeonghun J. Lee,et al.  Robust Error Analysis of Coupled Mixed Methods for Biot’s Consolidation Model , 2015, J. Sci. Comput..

[38]  Joshua A. White,et al.  Block-partitioned solvers for coupled poromechanics: A unified framework , 2016 .

[39]  Mary F. Wheeler,et al.  Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics , 2016 .

[40]  Cornelis W. Oosterlee,et al.  On an Uzawa smoother in multigrid for poroelasticity equations , 2017, Numer. Linear Algebra Appl..

[41]  Ludmil T. Zikatanov,et al.  A nonconforming finite element method for the Biot's consolidation model in poroelasticity , 2016, J. Comput. Appl. Math..

[42]  Jan M. Nordbotten,et al.  Robust fixed stress splitting for Biot's equations in heterogeneous media , 2017, Appl. Math. Lett..

[43]  Carmen Rodrigo,et al.  On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics , 2017 .

[44]  L. Zikatanov,et al.  Robust Block Preconditioners for Biot's Model , 2017, CSE 2017.

[45]  Jeonghun J. Lee,et al.  Parameter-Robust Discretization and Preconditioning of Biot's Consolidation Model , 2015, SIAM J. Sci. Comput..

[46]  J. Kraus,et al.  Parameter-robust stability of classical three-field formulation of Biot's consolidation model , 2017, 1706.00724.

[47]  L. Zikatanov,et al.  New stabilized discretizations for poroelasticity and the Stokes’ equations , 2017, Computer Methods in Applied Mechanics and Engineering.

[48]  Carmen Rodrigo,et al.  A partially parallel-in-time fixed-stress splitting method for Biot's consolidation model , 2019, Comput. Math. Appl..

[49]  Johannes Kraus,et al.  Conservative discretizations and parameter‐robust preconditioners for Biot and multiple‐network flux‐based poroelasticity models , 2018, Numer. Linear Algebra Appl..

[50]  Tsuyoshi Murata,et al.  {m , 1934, ACML.