Asymptotics of parity biases for partitions into distinct parts via Nahm sums

For a random partition, one of the most basic questions is: what can one expect about the parts which arise? For example, what is the distribution of the parts of random partitions modulo $N$? Since most partitions contain a $1$, and indeed many $1$s arise as parts of a random partition, it is natural to expect a skew towards $1\pmod{N}$. This is indeed the case. For instance, Kim, Kim, and Lovejoy recently established ``parity biases'' showing how often one expects partitions to have more odd than even parts. Here, we generalize their work to give asymptotics for biases $\mod N$ for partitions into distinct parts. The proofs rely on the Circle Method and give independently useful techniques for analyzing the asymptotics of Nahm-type $q$-hypergeometric series.

[1]  S. Garoufalidis,et al.  Knots and their related $q$-series , 2023, 2304.09377.

[2]  Manjil P. Saikia,et al.  Parity biases in partitions and restricted partitions , 2021, Eur. J. Comb..

[3]  S. Finch,et al.  Integer partitions , 2021, Tau Functions and their Applications.

[4]  BYUNGCHAN KIM,et al.  BIASES IN INTEGER PARTITIONS , 2021, Bulletin of the Australian Mathematical Society.

[5]  BYUNGCHAN KIM,et al.  Parity bias in partitions , 2020, Eur. J. Comb..

[6]  S. Garoufalidis,et al.  Asymptotics of Nahm sums at roots of unity , 2018, The Ramanujan Journal.

[7]  S. Garoufalidis,et al.  Bloch groups, algebraic $K$-theory, units, and Nahm's Conjecture , 2017, Annales scientifiques de l'École Normale Supérieure.

[8]  Robert C. Rhoades,et al.  Integer partitions, probabilities and quantum modular forms , 2017 .

[9]  Michael H. Mertens,et al.  The number of parts in certain residue classes of integer partitions , 2015, 1505.07045.

[10]  S. Zwegers,et al.  Nahm's Conjecture: Asymptotic Computations and Counterexamples , 2011, 1104.4008.

[11]  M. Kontsevich,et al.  Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants , 2010, 1006.2706.

[12]  A. Sárközy,et al.  On the distribution of the summands of unequal partitions in residue classes , 2006 .

[13]  A. Sárközy,et al.  On the distribution of the summands of partitions in residue classes , 2005 .

[14]  A. Sárközy,et al.  Arithmetic Properties of Summands of Partitions II , 2004 .

[15]  G. Andrews Questions and conjectures in partition theory , 1986 .

[16]  Don Zagier,et al.  The dilogarithm function. , 2007 .

[17]  D. Zagier Appendix. the Mellin Transform and Related Analytic Techniques , 2022 .