Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations

The majority of patients with neuroblastoma have tumors that initially respond to chemotherapy, but a large proportion will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole-genome sequencing of 23 paired diagnostic and relapse neuroblastomas showed clonal evolution from the diagnostic tumor, with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed mutations predicted to activate the RAS-MAPK pathway. Seven of these events were detected only in the relapse tumor, whereas the others showed clonal enrichment. In neuroblastoma cell lines, we also detected a high frequency of activating mutations in the RAS-MAPK pathway (11/18; 61%), and these lesions predicted sensitivity to MEK inhibition in vitro and in vivo. Our findings provide a rationale for genetic characterization of relapse neuroblastomas and show that RAS-MAPK pathway mutations may function as a biomarker for new therapeutic approaches to refractory disease.

Gudrun Schleiermacher | Jan Koster | Javed Khan | Rogier Versteeg | Isabelle Janoueix-Lerosey | Olivier Delattre | Julie M Gastier-Foster | Trevor J Pugh | Leo Colmet Daage | Virginie Bernard | Angela Bellini | Mathieu Chicard | Eve Lapouble | Sharon J Diskin | Shahab Asgharzadeh | Daniela S Gerhard | John M Maris | D. Gerhard | J. Khan | Jun S. Wei | A. Naranjo | D. Zwijnenburg | T. Pugh | J. Gastier-Foster | O. Delattre | J. Maris | C. V. D. Schoot | R. Versteeg | H. Caron | P. Sluis | S. Diskin | D. Oldridge | J. Koster | V. Bernard | E. Attiyeh | S. Asgharzadeh | Malcolm A. Smith | J. G. Auvil | M. Hogarty | V. Combaret | M. E. Ebus | J. Schulte | J. Molenaar | P. van Sluis | T. Watkins | C. E. van der Schoot | I. Janoueix-Lerosey | G. Tytgat | G. Schleiermacher | L. Schild | E. Lapouble | J. Michon | Shile Zhang | Angela Bellini | Mathieu Chicard | Shile Zhang | Ellen M Westerhout | Johannes H Schulte | Malcolm A Smith | Valérie Combaret | Jean Michon | Patricia Legoix-Né | Lori S. Hart | Huib N Caron | Jaime M Guidry Auvil | Jan J Molenaar | Jun S Wei | Thomas B K Watkins | Lori S Hart | Michael D Hogarty | Peter van Sluis | C Ellen van der Schoot | JulieAnn Rader | M. Dolman | Marli E Ebus | Arlene Naranjo | Jaime M Guidry Auvil | Danny A Zwijnenburg | Edward F Attiyeh | Godelieve A Tytgat | Thomas F Eleveld | Derek A Oldridge | Linda Schild | Nadia Bessoltane Bentahar | Anne Hakkert | Esther van Wezel | M Emmy M Dolman | J. Rader | T. F. Eleveld | Malcolm A. Smith | E. M. Westerhout | N. Bentahar | P. Legoix-né | Anne Hakkert | E. Wezel | T. Pugh | E. V. van Wezel | Nadia Bentahar | P. V. van Sluis | Patricia Legoix-né | Esther M. van Wezel | L. C. Daage | C. E. van der Schoot

[1]  Giovanni Parmigiani,et al.  Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma , 2012, Nature Genetics.

[2]  Jan Koster,et al.  NF1 Is a Tumor Suppressor in Neuroblastoma that Determines Retinoic Acid Response and Disease Outcome , 2010, Cell.

[3]  D. Zwijnenburg,et al.  Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes , 2012, Nature.

[4]  N. Hayward,et al.  Increased MAPK reactivation in early resistance to dabrafenib/trametinib combination therapy of BRAF-mutant metastatic melanoma , 2014, Nature Communications.

[5]  J. Maris,et al.  Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study. , 2013, The Lancet. Oncology.

[6]  A. Bouchard-Côté,et al.  PyClone: statistical inference of clonal population structure in cancer , 2014, Nature Methods.

[7]  R. Arceci The International Neuroblastoma Risk Group (INRG) Classification System: An INRG Task Force Report , 2009 .

[8]  Z. Szallasi,et al.  Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data , 2014, Annals of oncology : official journal of the European Society for Medical Oncology.

[9]  J. Maguire,et al.  Solution Hybrid Selection with Ultra-long Oligonucleotides for Massively Parallel Targeted Sequencing , 2009, Nature Biotechnology.

[10]  J. Maris,et al.  Children's Oncology Group's 2013 blueprint for research: Neuroblastoma , 2013, Pediatric blood & cancer.

[11]  K. Ross,et al.  Molecular rationale for the use of PI3K/AKT/mTOR pathway inhibitors in combination with crizotinib in ALK-mutated neuroblastoma , 2014, Oncotarget.

[12]  Bandana Sharma,et al.  The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma. , 2012, Cancer cell.

[13]  S. Ramaswamy,et al.  Systematic identification of genomic markers of drug sensitivity in cancer cells , 2012, Nature.

[14]  Gudrun Schleiermacher,et al.  Accumulation of segmental alterations determines progression in neuroblastoma. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  A. McKenna,et al.  Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia , 2012, Cell.

[16]  R. Arceci Localized Infant Neuroblastomas Often Show Spontaneous Regression: Results of the Prospective Trials NB95-S and NB97 , 2009 .

[17]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[18]  Ravi Radhakrishnan,et al.  ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. , 2014, Cancer cell.

[19]  Hiroyuki Shimada,et al.  Chromosome 1p and 11q deletions and outcome in neuroblastoma. , 2005, The New England journal of medicine.

[20]  F. Speleman,et al.  Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. , 1999, The New England journal of medicine.

[21]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[22]  A. Olshan,et al.  Children's Oncology Group's 2013 blueprint for research: Epidemiology , 2013, Pediatric blood & cancer.

[23]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[24]  Rogier Versteeg,et al.  Allelic loss of chromosome 1p as a predictor of unfavorable outcome in patients with neuroblastoma. , 1996, The New England journal of medicine.

[25]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[26]  Robert B. Hartlage,et al.  This PDF file includes: Materials and Methods , 2009 .

[27]  K. Matthay,et al.  Radiolabeled metaiodobenzylguanidine for imaging and therapy of neuroblastoma. , 2008, The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of....

[28]  F. Speleman,et al.  Emergence of new ALK mutations at relapse of neuroblastoma. , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[29]  Jinghui Zhang,et al.  Association of age at diagnosis and genetic mutations in patients with neuroblastoma. , 2012, JAMA.

[30]  A. McKenna,et al.  Absolute quantification of somatic DNA alterations in human cancer , 2012, Nature Biotechnology.

[31]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[32]  Thomas Zichner,et al.  DELLY: structural variant discovery by integrated paired-end and split-read analysis , 2012, Bioinform..

[33]  J. Maris Recent advances in neuroblastoma. , 2010, The New England journal of medicine.

[34]  R. Versteeg,et al.  Targeted BIRC5 silencing using YM155 causes cell death in neuroblastoma cells with low ABCB1 expression. , 2012, European journal of cancer.

[35]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[36]  H. Sather,et al.  Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. , 1985, The New England journal of medicine.

[37]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[38]  R. Foà,et al.  Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. , 2006, American journal of human genetics.

[39]  Steven J. M. Jones,et al.  The genetic landscape of high-risk neuroblastoma , 2013, Nature Genetics.

[40]  Giovanni Parmigiani,et al.  Patient-oriented gene set analysis for cancer mutation data , 2010, Genome Biology.

[41]  M. Cole,et al.  High Frequency of p53/MDM2/p14ARF Pathway Abnormalities in Relapsed Neuroblastoma , 2010, Clinical Cancer Research.

[42]  D. Gary Gilliland,et al.  Activating mutations in ALK provide a therapeutic target in neuroblastoma , 2008, Nature.

[43]  F. Berthold,et al.  Treatment and outcomes of patients with relapsed, high‐risk neuroblastoma: Results of German trials , 2011, Pediatric blood & cancer.