Crystal Structure and Magnetic Properties of Hexagonal FeCo Nitrides Prepared Using Ammonia Gas Nitrification

Single-phase <inline-formula><tex-math notation="LaTeX">$\varepsilon$</tex-math></inline-formula>-(FeCo)<italic><sub>x</sub></italic>N compound particles with <inline-formula><tex-math notation="LaTeX">$x$</tex-math></inline-formula> = 2.25–2.48 were synthesized using ammonia gas nitrification. The mass magnetization <inline-formula><tex-math notation="LaTeX">$M$</tex-math></inline-formula> at 10 K under a magnetic field of 9 T was 77 A<inline-formula><tex-math notation="LaTeX">$\cdot$</tex-math></inline-formula>m<inline-formula><tex-math notation="LaTeX">$^{2}$</tex-math></inline-formula>/kg, and Curie temperature <inline-formula><tex-math notation="LaTeX">$T$</tex-math></inline-formula><sub>C</sub> was 100 K for <inline-formula><tex-math notation="LaTeX">$x$</tex-math></inline-formula> = 2.48. These values decreased with increasing nitrogen content. Compared with <inline-formula><tex-math notation="LaTeX">$\varepsilon$</tex-math></inline-formula>-Fe<italic><sub>x</sub></italic>N, (FeCo)<italic><sub>x</sub></italic>N had significantly lower <inline-formula><tex-math notation="LaTeX">$M$</tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$T$</tex-math></inline-formula><sub>C</sub> values, even at comparable nitrogen content. Mössbauer spectroscopy suggests that the magnetic moment of Co decreases with increasing nitrogen content and disappears at approximately <inline-formula><tex-math notation="LaTeX">$x$</tex-math></inline-formula> = 2.35, even at the lowest measurement temperature of <inline-formula><tex-math notation="LaTeX">$T$</tex-math></inline-formula> = 3 K. Griffiths phaselike magnetic behavior was observed in the temperature dependence of magnetic susceptibility. The experimental results indicate that the Fe–Fe interaction may change from ferromagnetic to antiferromagnetic at <inline-formula><tex-math notation="LaTeX">$x$</tex-math></inline-formula> = 2.25 when the nitrogen content is low.

[1]  Huaijun Sun,et al.  Predicting magnetic anisotropy energies using site-specific spin-orbit coupling energies and machine learning: Application to iron-cobalt nitrides , 2022, Physical Review Materials.

[2]  Xiansong Liu,et al.  Analysis of the Griffiths–like phase observed in binary ε-Fe2N nitride , 2020 .

[3]  T. Honda,et al.  Positive Weiss Temperature in Layered Antiferromagnetic FeNiN for High-Performance Permanent Magnets , 2019, ACS Applied Nano Materials.

[4]  Koki Takanashi,et al.  Synthesis of single-phase L10-FeNi magnet powder by nitrogen insertion and topotactic extraction , 2017, Scientific Reports.

[5]  S. Bhattacharyya Iron Nitride Family at Reduced Dimensions: A Review of Their Synthesis Protocols and Structural and Magnetic Properties , 2015 .

[6]  Naoaki Hayashi,et al.  Challenge to the Synthesis of α''-Fe16N2 Compound Nanoparticle with High Saturation Magnetization for Rare Earth Free New Permanent Magnetic Material , 2013 .

[7]  Z. Klencsár MossWinn—methodological advances in the field of Mössbauer data analysis , 2013 .

[8]  Z. Ouyang Griffiths-like behavior in Ge-rich magnetocaloric compounds Gd5(SixGe1−x)4 , 2010 .

[9]  F. Izumi,et al.  Three-Dimensional Visualization in Powder Diffraction , 2007 .

[10]  M. Kishimoto,et al.  Magnetic properties of core–shell type Fe16N2 nanoparticles , 2007 .

[11]  S. Kokado,et al.  Theoretical analysis of highly spin-polarized transport in the iron nitride Fe4N , 2006, cond-mat/0605001.

[12]  V. Garg,et al.  Mössbauer study of iron-nitride-based magnetic fluid , 2004 .

[13]  M. Takahashi,et al.  α-Fe16N2 Problem - Giant Magnetic Moment or Not , 2000 .

[14]  B. Kooi,et al.  Thermodynamics and Long-Range Order of Interstitials in an h.c.p. Lattice: Nitrogen in ε-Fe2N1-z , 1997 .

[15]  P. Morais,et al.  Temperature dependence of the Mössbauer linewidth of superparamagnetic particles of ferric hydroxysulfate , 1985 .

[16]  E. Kita,et al.  Synthesis of Fine Fe4N Powder and Its Magnetic Characteristics , 1982 .

[17]  D. Papaconstantopoulos,et al.  Isomer shift and charge density in FeAl and theFe57isomer shift , 1978 .

[18]  Masae Takahashi,et al.  New Magnetic Material Having Ultrahigh Magnetic Moment , 1972 .

[19]  A. Wold,et al.  The preparation and crystallography of FeNiN and the series Fe4 − xNixN , 1960 .

[20]  J. Berger,et al.  Structure and Magnetic Properties of Some Transition Metal Nitrides , 1955 .

[21]  H. Berns Stainless steels suited for solution nitriding , 2002 .

[22]  H. Takaki,et al.  MAGNETIC STUDY ON HEXAGONAL NITRIDES OF 3d TRANSITION METALS. , 1972 .