Decidability and Undecidability Results for Propositional Schemata

We define a logic of propositional formula schemata adding to the syntax of propositional logic indexed propositions (e.g., pi) and iterated connectives ∨ or ∧ ranging over intervals parameterized by arithmetic variables (e.g., ∧i-1n pi, where n is a parameter). The satisfiability problem is shown to be undecidable for this new logic, but we introduce a very general class of schemata, called bound-linear, for which this problem becomes decidable. This result is obtained by reduction to a particular class of schemata called regular, for which we provide a sound and complete terminating proof procedure. This schemata calculus (called STAB) allows one to capture proof patterns corresponding to a large class of problems specified in propositional logic. We also show that the satisfiability problem becomes again undecidable for slight extensions of this class, thus demonstrating that bound-linear schemata represent a good compromise between expressivity and decidability

[1]  Vincent Aravantinos,et al.  A DPLL Proof Procedure for Propositional Iterated Schemata , 2009 .

[2]  Larry Wos,et al.  Automated reasoning (2nd ed.): introduction and applications , 1992 .

[3]  Miki Hermann,et al.  Unification of Infinite Sets of Terms Schematized by Primal Grammars , 1997, Theor. Comput. Sci..

[4]  Stefan Hetzl,et al.  Proof Analysis with HLK, CERES and ProofTool: Current Status and Future Directions , 2008 .

[5]  Larry Wos,et al.  Automated Reasoning: Introduction and Applications , 1984 .

[6]  Vincent Aravantinos,et al.  A Schemata Calculus for Propositional Logic , 2009, TABLEAUX.

[7]  Hubert Comon-Lundh,et al.  Inductionless Induction , 2001, Handbook of Automated Reasoning.

[8]  James Brotherston,et al.  Cyclic Proofs for First-Order Logic with Inductive Definitions , 2005, TABLEAUX.

[9]  Matthias Baaz,et al.  Short Proofs of Tautologies Using the Schema of Equivalence , 1993, CSL.

[10]  Matthias Baaz Note on the Generalization of Calculations , 1999, Theor. Comput. Sci..

[11]  Larry Wos,et al.  Automated reasoning - 33 basic research problems , 1988 .

[12]  Frank van Harmelen,et al.  The Oyster-Clam System , 1990, CADE.

[13]  Robert S. Boyer,et al.  Computational Logic , 1990, ESPRIT Basic Research Series.

[14]  Ronald Fagin,et al.  Finite-Model Theory - A Personal Perspective , 1990, Theor. Comput. Sci..

[15]  F. Wiedijk,et al.  The challenge of computer mathematics , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  David Michael Ritchie Park Finiteness is Mu-Ineffable , 1976, Theor. Comput. Sci..

[17]  John Corcoran,et al.  Schemata: The Concept of Schema in the History of Logic , 2006, Bulletin of Symbolic Logic.

[18]  Rance Cleaveland,et al.  Tableau-based model checking in the propositional mu-calculus , 1990, Acta Informatica.

[19]  G. Kok,et al.  An automatic theorem-prover , 1971 .

[20]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[21]  Aarti Gupta,et al.  Representation and symbolic manipulation of linearly inductive Boolean functions , 1993, ICCAD.

[22]  V. P. Orevkov Proof schemata in Hilbert-type axiomatic theories , 1991 .

[23]  Anthony Preston,et al.  Book review: Automated Reasoning: 33 Basic Research Problems by Larry Wos (Prentice Hall 1988) , 1988, SGAR.

[24]  Peter J. Stuckey,et al.  The Design of the Zinc Modelling Language , 2008, Constraints.

[25]  Hong Chen,et al.  On Finite Representations of Infinite Sequences of Terms , 1990, CTRS.

[26]  Colin Stirling,et al.  Modal Mu-Calculi , 2001 .

[27]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[28]  Michaël Rusinowitch,et al.  SPIKE, an Automatic Theorem Prover , 1992, LPAR.

[29]  Rohit Parikh Some results on the length of proofs , 1973 .

[30]  Jürgen Giesl,et al.  Decidable Classes of Inductive Theorems , 2001, IJCAR.

[31]  Neil Immerman,et al.  Relational queries computable in polynomial time (Extended Abstract) , 1982, STOC '82.

[32]  Hubert Comon-Lundh On unification of terms with integer exponents , 2005, Mathematical systems theory.

[33]  Mads Dam,et al.  On the Structure of Inductive Reasoning: Circular and Tree-Shaped Proofs in the µ-Calculus , 2003, FoSSaCS.

[34]  Vincent Aravantinos,et al.  A Decidable Class of Nested Iterated Schemata , 2010, IJCAR.

[35]  Christine Paulin-Mohring,et al.  Inductive Definitions in the system Coq - Rules and Properties , 1993, TLCA.

[36]  Peter Aczel,et al.  An Introduction to Inductive Definitions , 1977 .

[37]  Jan Krajícek,et al.  The number of proof lines and the size of proofs in first order logic , 1988, Arch. Math. Log..

[38]  David Baelde On the Proof Theory of Regular Fixed Points , 2009, TABLEAUX.

[39]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[40]  Alan Bundy,et al.  The Automation of Proof by Mathematical Induction , 1999, Handbook of Automated Reasoning.

[41]  Colin Stirling,et al.  Local Model Checking for Infinite State Spaces , 1992, Theor. Comput. Sci..

[42]  A. Dawar FINITE MODEL THEORY (Perspectives in Mathematical Logic) , 1997 .